大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
上个月Python的3.11版本发布了第一个beta版本,3.11带来了很多非常棒的新特性,例如错误提示更加具体,可以定位到具体代码位置等,十分友好,建议大家关注。这里简单为大家介绍一下。
恰巧,我最近发现了一个网站——Open ChatGPT,网址是 https://open-chat-gpt.com/cn。 简单来说,该网站调用 ChatGPT-4 (最新版) 的 API,让用户创建各种指定角色,服务于生活跟工作。不仅如此,还支持连ChatGPT官网都还没用上的AI画图功能。目前,相比其他网页各种限制使用次数的,这网站非常可贵在于可以无限次免费使用ChatGPT-4...
Sebastian Raschka是LightningAI的首席科学家,也是前威斯康星大学麦迪逊分校的统计学助理教授。他在大模型领域有非常深的简介,也贡献了许多有价值的内容。在最新的一期统计中,他总结了6种大模型的使用方法,引起了广泛的讨论。其中,关于使用领域数据集做无监督预训练是目前讨论较少,但十分重要的一个方向。
大模型微调依然是针对大量私有数据或者特定领域不可缺少的方法。就在前不久,LightningAI发布了一个轻量级大模型微调库Lit-Parrot,仅需一行代码即可微调当前开源大模型。
Aquila-7B是北京人工智能研究院(BAAI)开源的一个可商用大语言模型。因为其良好的推理效果和友好的商用协议,使用的人较多。今天,BAAI再次开源2个基于Aquila-7B微调的编程大模型:AquilaCode-7B-multi和AquilaCode-7B-py。
检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。
XVERSE-13B是元象开源的一个大语言模型,发布一周后就登顶HuggingFace流行趋势榜。该模型最大的特点是支持多语言,其中文和英文水平都十分优异,在评测结果上超过了Baichuan-13B,与ChatGLM2-12B差不多,不过ChatGLM2-12B是收费模型,而XVERSE-13B是免费商用授权!
kaggle是各类机器学习竞赛的著名平台,上面聚集了大量的机器学习比赛和数据集,也有大量的数据处理相关专业人员。每年官方都会向平台用户发放问卷,调查数据科学家的工具使用和平台采用情况。今年的调查结果也在两天前发出,有很多有意思的结论。
大模型的推理速度是当前制约大模型应用的一个非常重要的问题。在很多的应用场景中(如复杂的接口调用、很多信息处理)的场景,更快的大模型响应速度通常意味着更好的体验。但是,在实际中我们可用的场景下,大多数大语言模型的推理速度都非常有限。慢的有每秒30个tokens,快的一般也不会超过每秒100个tokens。而最近,美国加州一家企业Groq推出了他们的大模型服务,可以达到每秒接近500个tokens的响应速度,非常震撼。
今天,Google介绍了一个新的语言模型,一个Pathways语言模型:PaLM,这是一个用Pathways系统训练的5400亿个参数、仅有dense decoder的Transformer模型,在数百个语言理解和生成任务上对PaLM进行了评估,发现它在大多数任务中实现了最先进的性能,在许多情况下都有显著的优势。
谷歌在几个小时前发布了Gemini大模型,号称历史最强的大模型。这是一系列的多模态的大模型,在各项评分中超过了GPT-4V,可能是目前最强的模型。
在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。
深度求索是著名量化机构幻方量化旗下的一家大模型初创企业,成立与2023年7月份。他们开源了很多大模型,其中编程大模型DeepSeek-Coder系列获得了非常多的好评。而在今天,DeepSeek-AI再次开源了全新的多模态大模型DeepSeek-VL系列,包含70亿和13亿两种不同规模的4个版本的模型。
检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?
OpenAI的推理大模型o1模型的强有力竞争者!DeepSeekAI发布DeepSeek-R1-Lite-Preview~实测结果令人惊喜!
开源领域大语言模型再上台阶:Databricks开源1320亿参数规模的混合专家大语言模型DBRX-16×12B,评测表现超过Mixtral-8×7B-MoE,免费商用授权!
月之暗面开源了一个全新的160亿参数规模的MoE大语言模型Moonlight-16B:其训练算力仅需业界主流的一半
ChatGPT的强有力挑战者HuggingChat发布——速度很快,不过水平略差~~
如何基于PyTorch来优化大模型训练的内存(显存)使用:8种方法总结
开源多模态大模型新选择:DeepSeekAI(深度求索科技)开源全新多模态大模型DeepSeek-VL模型,包含可在手机端运行的13亿规模tiny多模态模型。