大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
大语言模型一个非常重要的应用方式就是微调(fine-tuning)。微调通常需要改变模型的预训练结果,即对预训练结果的参数继续更新,让模型可以在特定领域的数据集或者任务上有更好的效果。但是微调一个严重的副作用是可能会让大模型遗忘此前预训练获得的知识。为此,香港大学研究人员推出了一种新的微调方法,可以保证模型原有能力的基础上提升特定领域任务的水平,并据此开源了一个新的模型LLaMA Pro。
几分钟之前,OpenAI宣布ChatGPT支持多模态,目前已经支持语音的输入、语音的输出、理解图片的输入!不过目前似乎仅限于客户端~官方说的是未来2周内企业和Plus用户可以使用,后面会普及到其它用户!
正则化是一种基本技术,通过限制模型的复杂性来防止过度拟合并提高泛化性能。目前的深度网络严重依赖正则化器,如数据增强(DA)或权重衰减,并采用结构风险最小化,即交叉验证,以选择最佳的正则化超参数。然而,正则化和数据增强对模型的影响也不一定总是好的。来自Meta AI研究人员最新的论文发现,正则化是否有效与类别高度相关。
DALL·E 系列是由 OpenAI 开发的一系列基于大型语言模型的文本到图像生成系统。它们的核心目标是将文本描述转化为高度精确的图像。DALL·E2在2022年4月发布,但是一直没有公开使用,一年半后的2023年9月21日,OpenAI发布第三代DALL·E3,并承诺将与ChatGPT集成。
OpenAI再次发布GPT-4o更新版本,版本号为GPT-4o(2025-03-26),本次发布的GPT-4o模型在性能、易用性和协作能力上迎来多项优化,进一步提升了模型的直觉性、创造力和任务执行能力。此次更新聚焦于 STEM 与编程问题解决、指令遵循精度以及自然交互体验,各方面评测进步明显,超过了GPT-4.5。
吴恩达的DeepLearningAI在今天和LangChain的创始人一起合作发布了一个最新的基于LangChain使用LLM构建私有数据的问答系统和聊天机器人的课程(课程名:《LangChain: Chat with Your Data》)。LangChain是大语言模型应用开发领域目前最火的开源库。集成十分多的优秀特性,可以帮助我们非常简单构建LLM的应用。
很多算法的开源实现都包含多个文件,因此,学习这些开源代码的时候通常难以找到入口,也无法快速理解作者的逻辑,对于学习的童鞋来说都带来了不小的挑战。这里推荐一个非常优秀的强化学习开源库,它将经典的强化学习算法都实现在一个文件中,想要学习源代码的童鞋只需要看单个文件即可,这就是ClearRL!
WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!
Anthropic是一家专注于人工智能(AI)研究的公司,由OpenAI的前首席科学家Ilya Sutskever和Dario Amodei共同创立。Claude是Anthropic公司发布的基于transformer架构的大语言模型,被认为是最接近ChatGPT的商业产品。今天,Anthropic宣布Claude 2正式开始上架。
通义千问是阿里巴巴推出的一个大语言模型,此前开源的Qwen-7B引起了广泛的关注,因为他的理解能力很强但是参数规模很小,因此受到了很多人的欢迎。而目前再次开源全新的Qwen-14B的模型,参数规模142亿,但是它的理解能力接近700亿参数规模的LLaMA2-70B,数学推理能力超过GPT-3.5。
12月8日晚上,MistralAI在他们的推特账号上发布了一个磁力链接,大家下载之后根据名字推断这是一个混合专家模型(Mixture of Experts,MoE)。这种模型因为较低的成本和更高的性能被认为是大模型技术中非常重要的路径。也是GPT-4可能的方案。MistralAI在今天发布了博客,正式介绍了这个强大的模型。
深度强化学习(RL)导致了许多最近的和突破性的进展。然而,强化学习的实施并不容易,与使深度学习拥有PyTorch这样简单的框架支持不同,强化学习的训练缺少强有力的工具支撑。为了解决这些问题,DeepMind发布了Acme,一个用于构建新的RL算法的框架,该框架是专门为实现代理而设计的
今天Google发布了TensorStore,这是一个开源的C++和Python软件库,设计用于存储和操作大规模n维数据。TensorStore已经被用来解决科学计算中的关键工程挑战(例如,管理和处理神经科学中的大型数据集,如石油级的三维电子显微镜数据和神经元活动的 "4d "视频)。TensorStore还被用于创建大规模的机器学习模型,如PaLM,解决了分布式训练期间管理模型参数(检查点)的问题。
自然语言处理预训练大模型在最近几年十分流行,如OpenAI的GPT-3模型,在很多领域都取得了十分优异的性能。谷歌的PaLM也在很多自然语言处理模型中获得了很好的效果。而昨天,PapersWithCode发布了一个学术论文处理领域预训练大模型GALACTICA。功能十分强大,是科研人员的好福利!
Google DeepMind与Google Research的研究人员推出了一个全新的多语言数据集——MADLAD-400!这个数据集汇集了来自全球互联网的419种语言的大量文本数据,其规模和语言覆盖范围在公开可用的多语言数据集中应该是最大的。研究人员从Common Crawl这个庞大的网页爬虫项目中提取了大量数据,并进行了人工审核,删除了许多噪音,使数据集的质量得到了显著提升。
2018年7月份以来最好的机器学习的Github库和Reddit帖子
人工神经网络(Artificial Neural Network)算法简介
OpenAI官方教程:如何针对大模型微调以及微调后模型出现的常见问题分析和解决思路~以GPT-3.5微调为例
OpenAI可能即将增加按年付费的选项,一年的ChatGPT Plus仅需200美元
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~
重磅!苹果官方发布大模型框架:一个可以充分利用苹果统一内存的新的大模型框架MLX,你的MacBook可以一键运行LLaMA了