CNN入门算法LeNet-5介绍(论文详细解读)
1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。
Prompt-Tuning、Instruction-Tuning和Chain-of-Thought是近几年十分流行的大模型训练技术,本文主要介绍这三种技术及其差别。
使用R语言进行数据分析时,我们经常会遇到实验结果输出的问题,例如使用summary函数时,变量太多,控制台输出的结果不全,那么怎么将结果导出呢?
集成学习(Ensemble Learning)是解决有监督机器学习的一类方法,它的思路是基于多个学习算法的集成来获取一个更好的预测结果。本文将介绍相关概念,并对一些注意事项进行总结。
Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。
这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。
卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。
本文简要介绍了SCI/SCI-E/SSCI的区别以及相关期刊验证查询方法
R与java调用
这篇博客是来自Analytics Vidhya的一篇文章。写的很不错。
关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。
R语言,面板数据,动态回归
这几年在机器学习领域最亮最火最耀眼的新思想就是生成对抗网络了。这一思想不光催生了很多篇理论论文,也带来了层出不穷的实际应用。Yann LeCun 本人也曾毫不吝啬地称赞过:这是这几年最棒的想法!
狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)是一种非参数贝叶斯模型,它可以理解为一种聚类方法,但是不需要指定类别数量,它可以从数据中推断簇的数量。这篇博客将描述该模型及其求解过程。
您刚刚经历了一个耗时的过程,将一堆数据加载到python对象中。 也许你从数千个网站上爬取了数据。也许你计算了pi的数值。如果您的笔记本电脑电池耗尽或python崩溃,您的信息将丢失。 Pickling允许您将python对象保存为硬盘驱动器上的二进制文件。 在你pickle你的对象后,你可以结束你的python会话,重新启动你的计算机,然后再次将你的对象加载到python中。
在大模型领域,GGUF是一个非常常见的词语,也是非常常见的大模型预训练结果命名方式。很多人都有疑问gguf是什么格式?很多模型模型,如Yi-34B、Llama2-70B等模型都有对应的GGUF版本,这些版本都模型除了文件名多了GGUF外,其它与原有的模型名称完全一致。那么,GGUF大模型文件格式是什么意思?为什么会有这样的大模型文件,与它一同出现对比的是GGML格式文件,二者的区别是啥?
今天发现另一个可以替代官方API的接口网站,OpenRouter。尽管OpenAI和Anthropic的模型非常好,但是开发者使用需要申请API,但是,这两个服务的API申请非常麻烦。而OpenRouter目前提供了这些接口的付费调用,价格与官网完全一致,十分良心!
面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,本文介绍了一个R语言处理面板数据的案例
高斯分布是一种非常常见的分布,对于一元高斯分布我们比较熟悉,对于高斯分布的多元形式有很多人不太理解。这篇博客的材料主要来源Andrew Ng在斯坦福机器学习课的材料。
stata 输出回归结果
Wishart分布在多元高斯的贝叶斯推断中非常重要。它通常作为正态分布的协方差矩阵的逆矩阵的共轭先验存在。这篇博客将详细讲述Wishart分布及其作用。