大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。
原来直接用root账户授权远程访问失败,最新的MySQL8不允许直接创建并授权用户远程访问权限,必须先让自己有GRANT权限,然后创建用户,再授权。
数据结构中,自平衡二叉查找树搜索效率高,但是需要通过旋转和变色维护平衡。而列表虽然简单,但是对元素的查找需要比对列表中的每个元素,查找速度较慢。为了兼顾列表的简单易用,并提高查找效率,跳跃列表(Skip List)应运而生。
深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。
在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。
AI Playground最近的LLaMA2、Stable Diffusion XL等模型的进展也让大家看到了最新最强大的模型的能力。但是,对于大多数人来说,这些模型的使用依然具有较高的门槛,除了硬件资源消耗大,本身的部署也不容易。而支撑这些模型的一个重要的硬件因素就是英伟达的显卡。显卡已经超越一般理财,变得越来越贵。因此,基于大模型的免费服务成本也很高,而今天,英伟达官方的NGC网站推出了新的几款可以免费使用的大模型,包括聊天大模型LLaMA2、文本生成图片大模型Stable Diffusion等,基于
线性数据结构之跳跃列表(Skip List)详解及其Java实现
重磅!苹果官方发布大模型框架:一个可以充分利用苹果统一内存的新的大模型框架MLX,你的MacBook可以一键运行LLaMA了
HumanEval评测接近GPT-4-Turbo!阿里巴巴开源70亿参数编程大模型CodeQwen1.5-7B!
Mixtral-8×7B-MoE模型升级新版本,MistralAI开源全球最大混合专家模型Mixtral-8×22B-MoE
最新OpenAI的API透露,ChatGPT Plus外还有升级版的订阅计划:ChatGPT Team!25美元一个月!Plus用户可能没有GPT-4-32K了!