大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。
Dirichlet Process and Stick-Breaking(DP的Stick-breaking 构造)
这是一篇来自Towards Data Science上面的一篇个人实践分享,主要是针对销量进行预测。一般来说,销量受到价格、季节等因素影响较大。这里就是考虑这些因素进行的一个实践。值得大家一试。这里我们翻译一下,并对其中的某些工作做一些简单的解释。
本文介绍了文本领域的相关任务和技术,探讨了循环神经网络在文本领域的优势,并进一步研究了应用在文本领域的卷积网络方法,原文地址:https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
使用爬虫获取数据对科研来说及其重要,本系列博客将讲述如何使用Java编写爬虫工具获取网页数据。在这篇博客里,我们将简单介绍Jsoup解析HTML页面的操作。
GoogLeNet是谷歌在2014年提出的一种CNN深度学习方法,它赢得了2014年ILSVRC的冠军,其错误率要低于当时的VGGNet。与之前的深度学习网络思路不同,之前的CNN网络的主要目标还是加深网络的深度,而GoogLeNet则提出了一种新的结构,称之为inception。GoogLeNet利用inception结构组成了一个22层的巨大的网络,但是其参数却比之前的如AlexNet网络低很多。是一种非常优秀的CNN结构。
前几天,北京智源人工智能研究院引入了一个名为WuDaoMM的大规模多模态语料库,总共包含超过6.5亿对图像-文本。具体来说,约有6亿对数据是从图像和标题呈现弱相关的多个网页中收集的,另外5000万对强相关的图像-文本是从一些高质量的图片网站中收集的。
去年5月份的时候,Python创始人Guido van Rossum在参加Language Summit时候说他希望Python3.11能在性能上获得巨大的提升,可以实现性能翻倍。目前看,似乎已经有了很大的希望!
二叉查找树是一种特殊的二叉树结构,它改善了二叉树的查找效率,二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。与一般的二叉树的主要区别就是它对子节点的键值排序有一定要求。
机器学习是这几年很热门的学习和工作的方向。但是机器学习相关算法的入门却并不容易。本文参考自MLTUT的博文,列举了2021年适合初学者的十个最佳机器学习网络课程供大家学习参考。
今天,THUDM开源了ChatGLM-6B的多模态升级版模型VisualGLM-6B。这是一个多模态对话语言模型,支持图像、中文和英文。VisualGLM-6B的特别之处在于它能够整合视觉和语言信息。可以用来理解图片,解析图片内容。