缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit
少量标记的学习(Few-shot learning)是一种在较少标注数据集中进行模型训练的一种学习方法。为了解决大量标注数据难以获取的情况,利用预训练模型,在少量标记的数据中进行微调是一种新的帮助我们进行模型训练的方法。而就在昨天,Hugging Face发布了一个新的语句transformers(Sentence Transformers)框架,可以针对少量标记数据进行模型微调以获取很好的效果。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
少量标记的学习(Few-shot learning)是一种在较少标注数据集中进行模型训练的一种学习方法。为了解决大量标注数据难以获取的情况,利用预训练模型,在少量标记的数据中进行微调是一种新的帮助我们进行模型训练的方法。而就在昨天,Hugging Face发布了一个新的语句transformers(Sentence Transformers)框架,可以针对少量标记数据进行模型微调以获取很好的效果。
asd
编程大模型是当前大语言模型里面最重要的一类。一般是基础大模型在预训练之后,加入代码数据集继续训练得到。在代码补全、代码生成方面一般强于常规的大语言模型。阿里最新开源的70亿参数大模型CodeQwen1.5-7B在HumanEval评测结果上超过了GPT-4早期版本,表现异常地好!
Stable Diffusion XL是StabilityAI最新的开源模型。是目前业界流行的免费开源图像生成大模型。2023年4月份StabilityAI就宣布了SD XL的存在并在2023年7月26日开源。SD XL相比较此前的模型速度更快、提示词更短、生成的图像更加真实。但是,大多数人可能并没有实际运行过,感受过这个模型的魅力。在这篇博客中,我们给大家展示如何利用Google Colab的免费GPU资源,部署一个SD XL模型,并通过prompt生成一些图片。
当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。昨天HuggingFace官方宣布将推动GGUF格式的大模型文件在HuggingFace上的使用。
OpenAI发布的产品中,有2个产品可以用来将GPT当作一个类似AI Agent工具使用,同时支持接入自定义的接口和数据。那就是GPTs和Assistant API,前者可以在界面直接操作,后者则是一个API,两者功能接近,为了让大家更加清晰理解二者区别,OpenAI官方最近发布了二者的解释。
OpenAI是全球最著名的人工智能研究机构,发布了许多著名的人工智能技术和成果,如大语言模型GPT系列、文本生成图片预训练模型DALL·E系列、语音识别模型Whisper系列等。由于这些模型在各自领域都有相当惊艳的表现,引起了全世界广泛的关注。
今天,吴恩达在推特上宣布和OpenAI、LangChain以及Lamini三家公司共同推出了3门短视频课程,分别是《使用ChatGPT API构建系统》、《基于LangChain的大语言模型应用与开发》和《Diffusion模型是如何工作的》。三门课程都是1个小时的短视频课程,而且配有详细的Jupyter Notebook使用方法。
Batch Normalization(BN)是一种深度学习的layer(层)。它可以帮助神经网络模型加速训练,并同时使得模型变得更加稳定。尽管BN的效果很好,但是它的原理却依然没有十分清晰。本文总结一些相关的讨论,来帮助我们理解BN背后的原理。
通义千问是阿里巴巴开源的一系列大语言模型。Qwen系列大模型最高参数量720亿,最低18亿,覆盖了非常多的范围,其各项评测效果也非常好。而昨天,Qwen团队的开发人员向HuggingFace的transformers库上提交了一段代码,包含了Qwen2的相关信息,这意味着Qwen2模型即将到来。
几个小时前SemiAnalysis的DYLAN PATEL和DYLAN PATEL发布了一个关于GPT-4的技术信息,包括GPT-4的架构、参数数量、训练成本、训练数据集等。本篇涉及的GPT-4数据是由他们收集,并未公开数据源。但是内容还是有一定参考性,大家自行判断。
在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。
随着安全隐私被大家所重视,网站开启HTTPS访问已经是不可阻挡的趋势。HTTPS协议就是借助SSL/TLS证书实现http的加密传输的协议(HTTP Over SSL/TLS)。本文将记录如何使用第三方库申请Let's Encrypt证书,并在tomcat中开启相关的功能。
介绍如何使用git下载远程、更新远程项目到本地,提交本地更改到远程
The AI Index报告是斯坦福大学发布的人工智能发展研究报告。最早的报告开始于2017年,每年一个版本,主要是总结过去一年人工智能的发展情况。2023年斯坦福The AI Index已经在近日发布。相比较之前的报告,今年的报告新增对Foundation模型的分析。让我们看看斯坦福大学如何总结2022年人工智能领域的发展情况。
阿里巴巴最新开源了320亿参数的大语言模型Qwen1.5-32B,这个模型在各项评测结果中都略超此前最强开源大模型Mixtral 8×7B MoE,比720亿参数的Qwen-1.5-72B模型略差。但是一半的参数意味着只有一半的显存,这样的性价比极高。
人工智能指数是斯坦福大学以人为本人工智能研究所(Stanford Institute for Human-Centered Artificial Intelligence (HAI))联合学术界、工业界的专家一起发布的人工智能相关的发展报告。2022年度AI指数报告在近几日发布。
今天,HuggingFace官方宣布了Transformers最大胆的功能:Transformers Agents。这是继AutoGPT开创性发布之后,AI Agent被业界接受的另一个重要的里程碑。
大多数编程领域的大模型应用都是单行代码补全或者单个函数生成的方式。完整的程序生成依然面临较大的挑战。而现在,一个初创企业直接发布了一个AI软件工程师,可以直接作为一个程序员来接受用户需求和反馈,独立完成编码和应用上线功能。这就是Cognition发布的全球首个AI软件工程师Devin。
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
OpenAI在3月15日发布了一个最新的GPT-3和Codex的版本,这个版本最大的能力就是可以在已有的文本上插入或者编辑新的内容。而不是续写已有的文本。这个能力最大的应用就是重写已有文本,或者用来重构代码。
OpenAI再次发布GPT-4o更新版本,版本号为GPT-4o(2025-03-26),本次发布的GPT-4o模型在性能、易用性和协作能力上迎来多项优化,进一步提升了模型的直觉性、创造力和任务执行能力。此次更新聚焦于 STEM 与编程问题解决、指令遵循精度以及自然交互体验,各方面评测进步明显,超过了GPT-4.5。
开源大语言模型经过一年多的发展,终于有一个模型可以在权威榜单上击败GPT-4的较早的版本,这就是CohereAI企业开源的Command R+。这是一个开源但是不允许商用的模型,参数规模达到1040亿,也是目前为止开源参数规模最大的一个模型。
昨天,卡地夫大学的NLP研究小组CardiffNLP发布了一个全新的NLP处理Python库——TweetNLP,这是一个完全基于推文训练的NLP的Python库。它提供了一组非常实用的NLP工具,可以做推文的情感分析、emoji预测、命名实体识别等。