DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 超长上下文
Tag

Articles tagged "超长上下文"

A curated list of original AI and LLM articles related to "超长上下文", updated regularly.

Tags:#超长上下文
MiniMaxAI开源全球推理长度最长的推理大模型MiniMax-M1:100万tokens输入,最高支持80K的推理长度

MiniMaxAI开源全球推理长度最长的推理大模型MiniMax-M1:100万tokens输入,最高支持80K的推理长度

MiniMaxAI于2025年6月17日正式发布了其新一代大模型——MiniMax-M1。MiniMax-M1的核心亮点在于结合了混合专家(MoE)架构和创新的闪电注意力(Lightning Attention)机制。MiniMax-M1不仅原生支持高达100万Token的上下文长度,推理的tokens也支持最高80K,是当前支持的最多推理长度的大模型。此外,MiniMax-M1在计算效率上也很高,例如在生成10万Token时,其FLOPs消耗仅为DeepSeek R1的25%!

2025/06/17 23:49:56575
#MiniMax#MiniMax-M1#超长上下文模型
A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍

A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍

A21实验室是一家以色列的大模型研究机构,专门从事自然语言处理相关的研究。就在今天,A21实验室开源了一个全新的基于混合专家的的大语言模型Jamba,这个MoE模型可以在单个GPU上支持最高140K上下文的输入,非常具有吸引力。

2024/03/29 00:04:31529
#Jamba#MoE#混合专家大模型
全球首个200万上下文商业产品开始内测!月之暗面Kimi助手开启最长上下文模型内测邀请。

全球首个200万上下文商业产品开始内测!月之暗面Kimi助手开启最长上下文模型内测邀请。

MoonshotAI(月之暗面)是一家中国的大模型初创企业,在2023年4月份成立。其最为著名的产品就是KimiChat,一个完全免费的大模型聊天机器人。就在刚刚,MoonshotAI官方宣布开启200万上下文的KimiChat内测!这应该是全球首个商业产品支持并内测200万上下文输入的模型了!此前其它产品宣布的200万上下文大多数都没有公开商发。

2024/03/18 17:37:091,373
#KimiChat#Long-Context#MoonshotAI
国产全球最长上下文大语言模型开源:XVERSE-13B-256K,一次支持25万字输入,免费商用授权~

国产全球最长上下文大语言模型开源:XVERSE-13B-256K,一次支持25万字输入,免费商用授权~

深圳的元象科技开源了一个最高上下文256K的大语言模型XVERSE-13B-256K,可以一次性处理25万字左右,是目前上下文长度最高的大模型,而且这个模型是以Apache2.0协议开源,完全免费商用授权。

2024/01/17 22:27:071,162
#Long-Context#XVERSE-13B-256K#超长上下文
如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~

如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~

Claude 2.1版本的模型上下文长度最高拓展到200K,也是目前商用领域上下文长度支持最长的模型之一。但是,在模型发布不久之后,有人测试发现模型在超过20K之后效果下降明显。但是Anthropic官方发布了一个说明解释这不是Claude模型本身在超长上下文的真实原因,主要是模型拒绝回答一些与文章主体不符的内容,实际中只需要一句prompt即可提高性能,将模型在超长上下文的水平准确率从27%提高到98%。

2023/12/07 19:14:471,563
#Claude2.1#long-context#超长上下文
GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。

2023/11/09 18:51:482,205
#GPT-4Turbo#Long-Context#超长上下文
大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

大模型的长输入在很多场景下都有非常重要的应用,如代码生成、故事续写、文本摘要等场景,支撑更长的输入通常意味着更好的结果。昨天,斯坦福大学、加州伯克利大学和Samaya AI的研究人员联合发布的一个论文中有一个非常有意思的发现:当相关信息出现在输入上下文的开始或结束时,大模型的性能通常最高,而当大模型必须访问长上下文中间的相关信息时,性能显著下降。本文将简单介绍一下这个现象。

2023/09/17 22:22:405,762
#long-context#大模型#大语言模型
支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3

支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3

目前开源领域已经有一些模型宣称支持了8K甚至是更长的上下文。那么这些模型在长上下文的支持上表现到底如何?最近LM-SYS发布了LongChat-7B和LangChat-13B模型,最高支持16K的上下文输入。为了评估这两个模型在长上下文的表现,他们对很多模型在长上下文的表现做了评测,让我们看看这些模型的表现到底怎么样。

2023/07/02 09:40:483,855
#LLM#long-context#开源大模型

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解OpenAI最新的GPT-4V的多模态API接口是如何计算tokens的?这些计算逻辑背后透露了GPT-4V什么样的模型架构信息?初学者搭建C语言开发环境Tensorflow中数据集的使用方法(tf.data.Dataset)智谱AI开源多模态推理大模型GLM-4.1V-Thinking:90亿参数,基于强化学习技术,带推理能力,多模态理解能力接近720亿的Qwen2.5-VL-72B,免费商用授权使用深度学习(逻辑回归)处理图像识别的问题马斯克的X.AI平台即将发布的大模型Grōk AI有哪些能力?新消息泄露该模型支持2.5万个字符上下文!如何评估大模型的Agent能力?τ²-Bench:评估双控对话智能体的新标准SWE-bench Verified:提升 AI 模型在软件工程任务评估中的可靠性HumanEval评测接近GPT-4-Turbo!阿里巴巴开源70亿参数编程大模型CodeQwen1.5-7B!

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介