大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。
LM-SYS全称Large Model Systems Organization,是由加利福尼亚大学伯克利分校的学生和教师与加州大学圣地亚哥分校以及卡内基梅隆大学合作共同创立的开放式研究组织。该团队在2023年3月份成立,目前的工作是建立大模型的系统,是聊天机器人Vicuna的发布团队。今天开源 了包含3.3万包含真实人类偏好的对话数据集和3000条专家标注的对话数据集:Chatbot Arena Conversation Dataset和MT-bench人工注释对话数据集。
DALL·E 系列是由 OpenAI 开发的一系列基于大型语言模型的文本到图像生成系统。它们的核心目标是将文本描述转化为高度精确的图像。DALL·E2在2022年4月发布,但是一直没有公开使用,一年半后的2023年9月21日,OpenAI发布第三代DALL·E3,并承诺将与ChatGPT集成。
The Information最新消息透露OpenAI正在抓紧准备GPT-4多模态版本的发布,可能称为GPT4-Vision。
基于文本做文本摘要的时候,摘要所包含的信息密度是一个非常重要的问题。正常情况下我们希望文本摘要既能覆盖更多的重要信息,又要保持简洁和连贯。SalesforceAI与MIT等机构的研究人员联合发布了一个最新的Prompt技巧,称为密度链提示方法(Chain of Density Prompting),可以提取有信息含量的简洁摘要。
OpenAI最新发布了GPT-3.5-Turbo-Instruct,这是一款强大的指令遵循大模型。尽管官方没有发布官方博客介绍,但我们将在本文中详细探讨这一模型的特点以及其在人工智能领域的价值。
检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。
大模型的长输入在很多场景下都有非常重要的应用,如代码生成、故事续写、文本摘要等场景,支撑更长的输入通常意味着更好的结果。昨天,斯坦福大学、加州伯克利大学和Samaya AI的研究人员联合发布的一个论文中有一个非常有意思的发现:当相关信息出现在输入上下文的开始或结束时,大模型的性能通常最高,而当大模型必须访问长上下文中间的相关信息时,性能显著下降。本文将简单介绍一下这个现象。
CMU的工程人工智能硕士学位的研究生Jean de Nyandwi近期发表了一篇博客,详细介绍了当前大语言模型主流架构Transformer的历史发展和当前现状。这篇博客非常长,超过了1万字,20多个图,涵盖了Transformer之前的架构和发展。此外,这篇长篇介绍里面的公式内容并不多,所以对于害怕数学的童鞋来说也是十分不错。本文是其翻译版本,欢迎大家仔细学习。
随着大型语言模型(LLMs)的不断发展,它们在训练和推理方面的计算需求已经呈指数级增长。这一趋势不仅带来了高昂的成本和能源消耗,还引入了模型部署和可伸缩性方面的障碍。为此,DeciLM开源了2个全新的DeciLM-6B和DeciLM-6B-Instruct大模型,参数比LLaMA2 7B略低,性能相当,但是推理速度却超过LLaMA2 7B的15倍。
在高性能计算(HPC)、人工智能(AI)、和数据分析等领域,图形处理器(GPUs)正在发挥越来越重要的作用。其中,NVIDIA的 A100尤为引人注目。这是英伟达最强大的显卡处理器,也是当前使用最广泛大模型训练用的显卡。本文主要是各大企业最新的2023年9月份拥有的显卡数量统计。
基于人类反馈的强化学习方法(Reinforcement Learning with Human Feedback,RLHF)是一种强化学习(Reinforcement Learning,RL)的变种,它利用人类的专业知识和反馈来指导机器学习模型的训练和决策过程。这种方法旨在克服传统RL方法中的一些挑战,例如样本效率低、训练困难和需要大量的试错。在大语言模型(LLM)中,RLHF带来的模型效果提升不仅仅是模型偏好与人类偏好的对齐,模型的理解能力和效果也会更好。
在当今的人工智能领域,大型语言模型(LLM)已成为备受瞩目的研究方向之一。它们能够理解和生成人类语言,为各种自然语言处理任务提供强大的能力。然而,这些模型的训练不仅仅是将数据输入神经网络,还包括一个复杂的管线,其中包括预训练、监督微调和对齐三个关键步骤。本文将详细介绍这三个步骤,特别关注强化学习与人类反馈(RLHF)的作用和重要性。
Google DeepMind与Google Research的研究人员推出了一个全新的多语言数据集——MADLAD-400!这个数据集汇集了来自全球互联网的419种语言的大量文本数据,其规模和语言覆盖范围在公开可用的多语言数据集中应该是最大的。研究人员从Common Crawl这个庞大的网页爬虫项目中提取了大量数据,并进行了人工审核,删除了许多噪音,使数据集的质量得到了显著提升。
随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!
MetaAI开源高质量高精度标注的图像数据集FACET:3.2万张图片、5万个主题,平均图像解析度达到1500×2000
吴恩达AI系列短课再添精品课程:如何基于LangChain使用LLM构建私有数据的问答系统和聊天机器人
HuggingFace开源语音识别模型Distil-Whisper,基于OpenAI的Whisper-V2模型蒸馏,速度快6倍,参数小49%!
如何对向量大模型(embedding models)进行微调?几行代码实现相关原理
预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning
来自OpenAI的官方解释:ChatGPT中的GPTs与Assistants API的区别是什么?有什么差异?
Deep Neural Networks and Tabular Data: A Survey——XGBoost依然是最优秀的算法模型