大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
随着大型语言模型(LLM)能力的飞速发展,如何科学、准确地评估其性能,特别是深度的逻辑推理和代码生成能力,已成为人工智能领域的一大挑战。传统的评测基准在面对日益强大的模型时,逐渐暴露出数据污染、难度不足、无法有效评估真实推理能力等问题。在这一背景下,一个旨在检验模型竞赛级编程水平的评测基准——Codeforces应运而生,为我们提供了一个更严苛、更接近人类程序员真实水平的竞技场。
谷歌DeepMind发布了一个全新的大模型——Genie 3,这是一个能够根据文本描述生成多样化、可实时交互虚拟世界的通用世界模型。目前,Genie3可以生成几分钟的720P的视频,且每秒24帧左右。用户也可以在生成的视频中实时交互控制。从谷歌官方的视频看,这个Genie 3模型生成的视频和游戏世界的质量很高,非常令人心动!
就在刚才,阿里开源了Qwen Image大模型,这是阿里千问团队开源的高质量图片生成和编辑的大模型。这份发布迅速在AI社区引起了广泛关注,其核心并非又一个单纯追求图像美学或真实感的模型,而是直指一个长期存在的行业痛点:在图像中进行复杂、精准、尤其是高保真的多语言文本渲染。
随着多模态大语言模型(MLLM)在各个领域的应用日益广泛,一个核心问题浮出水面:我们如何信赖它们生成内容的准确性?当模型需要结合图像和文本进行问答时,其回答是否基于事实,还是仅仅是“看似合理”的幻觉?为了应对这一挑战,一个名为SimpleVQA的新型评测基准应运而生,旨在为多模态模型的事实性能力提供一个清晰、可量化的度量衡。
7月28日,智谱AI(Zhipu AI)向开源社区投下了一枚重磅炸弹,正式发布了其最新的旗舰模型系列:GLM-4.5。该系列包含两个新成员——GLM-4.5和GLM-4.5-Air,两者均以开源权重形式提供。官方技术报告详细阐述了其设计理念、技术细节以及在多项基准测试中的表现。本次发布的核心目标是打造一个能够统一推理、代码和Agent智能体能力的模型,以应对日益复杂的AI应用需求。本文将深入解析这份官方报告,剖析其核心技术、性能表现,并探讨其在当前大模型竞争格局中的战略定位。
阿里今天开源了一个Qwen3-235B-A22B模型的小幅更新版本,命名为Qwen3-235B-A22B-Thinking-2507,这是一个只支持带推理过程的模型,而四天前,阿里还开源了Qwen3-235B-A22B-Instruct-2507,一个不支持推理过程的模型。这2个版本模型去除了Qwen3此前的一个模型的混合架构模式(即一个模型同时支持thinking和non-thinking),而是拆分成2个不同的版本。阿里官方说这是从社区获得了反馈之后决策的。
Terminal-Bench是一个新兴的开源基准测试,专为评估人工智能Agent(AI Agent)在命令行终端环境中的实际操作能力而设计。它通过一系列模拟真实世界场景的复杂任务,旨在客观、可量化地衡量AI Agent在执行代码编译、服务器管理和数据处理等任务时的熟练程度与自主性。
阿里宣布开源第三代编程大模型Qwen3-Coder-480B-A35B,该模型是Qwen3编程大模型中第一个开源的版本,同时官方还基于Google的Gemini CLI改造并开源了阿里自己的命令行编程工具Qwen Code,完全免费使用。
几个小时前,OpenAI的研究人员披露,其一款内部实验性的大语言模型,在模拟的国际数学奥林匹克(International Math Olympiad ,IMO)竞赛2025中取得了金牌水平的成绩。这是一个里程碑式的突破,因为IMO被认为是衡量创造性数学推理能力的巅峰,远超以往任何AI基准测试。这项成就并非通过专门针对数学的“窄”方法实现,而是源于通用人工智能研究的根本性突破,尤其是在处理难以验证的任务和长时间推理方面。
2025年7月17日,LMArena的大模型Web能力匿名竞技场出现了一个代号为anonymous-chatbot-0717的模型,而根据ChatGPT网页版的抓包显示,这个模型应该是o3家族系列的一员,其模型的api的id为“o3-alpha-responses-2025-07-17”。
OpenAI刚刚发布了一个全新的AI Agent产品,称为ChatGPT Agent。这个全新的Agent系统可以控制我们的电脑,然后使用电脑上的浏览器、PPT、Excel等工具帮我们完成一些日常的工作,从头开始帮我们完成一些非常复杂的任务。根据OpenAI的描述,这个Agent系统的目标未来是一个通用的Agent,而这些能力未来将会随着这个产品不定期更新。
Kiro 是一款AWS刚发布的、具有代理(agentic)能力的集成开发环境(IDE),它的目的是希望通过简化的开发者体验,帮助开发者从概念原型无缝过渡到生产级别的应用。它的核心理念是“规格驱动开发”(spec-driven development),以解决当前 AI 编程从有趣的原型到可靠的生产系统之间存在的鸿沟。
MTEB是一个用于评估向量大模型向量化准确性的评测排行榜。它全称为Massive Text Embedding Benchmark,是一个旨在衡量文本嵌入模型在多种任务上表现的基准测试。
Creative Writing v3 是一个用于评估大型语言模型(LLM)创意写作能力的评测基准。该基准采用混合评分系统,旨在更精确地区分不同模型,特别是顶尖模型之间的性能差异。
上周,MoonshotAI 发布了 Kimi K2,并宣布 完全开源、允许商用。发布 24 小时内,社区即完成了 MLX 移植、4-bit 量化等后续工作。外网很多人评价说,Kimi K2是另一个DeepSeek R1时刻。本文尝试以第三方视角,把Kimi开发者公开的技术讨论、社区疑问与公开配置里的数字串成一条完整的技术决策链,解释Kimi K2背后的技术决策以及他们眼中大模型创业企业的方向。