大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
SCI期刊可能是国内科研活动中与期刊最相关的话题内容。类似的,包括SCIE、SSCI和EI期刊也是常见的话题。本文将对这几个名词进行解释,并着重说明SCIE是否属于SCI、以及SCI和EI、SSCI的区别。
运行本地dask集群的时候出错Task exception was never retrieved的解决方法
推荐中,有研究explict feedback,有研究implict feedback,今天就来谈谈这两种基本模型是怎么建的?其实,都是套路~
关注深度学习或者NLP的童鞋应该都知道openAI的GPT-3模型,这是一个非常厉害的模型,在很多任务上都取得了极其出色的成绩。然而,OpenAI的有限开放政策让这个模型的应用被限定在很窄的范围内。甚至由于大陆不在OpenAI的API开放国家,大家几乎都无法使用和体验。而五一假期期间,FaceBook的研究人员Susan Zhang等人发布了一个开源的大预言模型,其参数规模1750亿,与GPT-3几乎一样。
狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活
GLM4是智谱AI发布的第四代基座大语言模型,全称General Language Model,最早由清华大学KEG小组再2021年发布。这个基座模型也是著名的开源国产大模型ChatGLM系列的基座模型。本次发布的第四代GLM4的能力相比此前的基座模型提升了60%,已经与世界最强模型Gemini Ultra和GPT-4接近!
交叉验证是一种用于估计机器学习模型性能的统计方法。它是一种评估统计分析结果如何推广到独立数据集的方法。简单来说,就是将数据集分成不同的部分,然后某些部分训练,某些部分测试,某些部分验证,这样可以最大程度避免过拟合以及测试模型在陌生数据集的性能。
在2020年的亚马逊reInvent发布会上,亚马逊正式发布了一项新的服务,即Amazon SageMaker Feature Store,中文简介是适用于机器学习特征的完全托管的存储库。 Feature Store是这两年兴起的另一个关于人工智能系统的基础设施,应该也是未来几年最重要的人工智能基础设施之一。本文将介绍一下Feature Store是什么以及为什么很多企业开始推广这个东西。
OpenAI在2023年8月份发布了GPT-3.5的微调接口,并表示会在2023年秋天开放16K的gpt-3.5-turbo-16k模型和GPT-4的微调(参考:[重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口](https://www.datalearner.com/blog/1051692752268726 "重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口"))。然而,微调并不是一个简单的问题,如何对大模型微调以及如果微调出现问题