DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
原创博客

原创AI技术博客

探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

排序方式
按日期排序按浏览量排序
指标函数(Metrics Function)和损失函数(Loss Function)的区别是什么?

指标函数(Metrics Function)和损失函数(Loss Function)的区别是什么?

指标(metrics)和损失函数(loss function)在深度学习和机器学习里面非常常见,很多时候他们的公式都似乎是一样的,在编写程序的时候,二者的区别好像也不是很大。那为什么还会有这两种不同的概念出现呢?本文将简单介绍一下二者的区别和应用。

2022/07/05 19:14:023,054
#指标函数#损失函数
计算机视觉领域的六大任务简介

计算机视觉领域的六大任务简介

计算机视觉与自然语言处理是近几年人工智能领域进步最快以及应用最为成熟的两个方向。计算机视觉里面任务涉及面广,有很多细分领域,本文将对计算机视觉领域中比较常见的六种任务进行总结并同时展示以下相关任务的一些成绩。

2021/11/21 21:29:203,056
#CV#计算机视觉
主题模型聚类匹配2018TKDE阅读笔记(Topic Models for Unsupervised Cluster Matching)

主题模型聚类匹配2018TKDE阅读笔记(Topic Models for Unsupervised Cluster Matching)

主题模型聚类匹配

2018/04/24 16:48:573,059
#主题模型聚类匹配
如何让开源大模型支持ChatGPT的Code Interpreter能力:基于LangChain的开源项目Code Interpreter API

如何让开源大模型支持ChatGPT的Code Interpreter能力:基于LangChain的开源项目Code Interpreter API

ChatGPT的Code Interpreter插件让ChatGPT突破了大语言模型本身只能做文本处理的限制,使其可以通过生成并执行Python代码来实现强大的数据分析、图片生成、视频数据处理等操作,大大拓展了ChatGPT的实用范围和价值。在此前的文章中,我们已经分析了Code Interpreter插件的官方实现。而今天,LangChain的官方博客也推出了一种类似的开源方案,让开源模型也可以实现ChatGPT的Code Interperter插件。我们简要描述一下这个方案。

2023/07/18 00:32:473,067
#ChatGPT#CodeInterpreter
国产开源中文大语言模型再添重磅玩家:清华大学NLP实验室发布开源可商用大语言模型CPM-Bee

国产开源中文大语言模型再添重磅玩家:清华大学NLP实验室发布开源可商用大语言模型CPM-Bee

5月27日,OpenBMB发布了一个最高有100亿参数规模的开源大语言模型CPM-BEE,OpenBMB是清华大学NLP实验室联合智源研究院成立的一个开源组织。该模型针对高质量中文数据集做了训练优化,支持中英文。根据官方的测试结果,其英文测试水平约等于LLaMA-13B,中文评测结果优秀。

2023/05/31 23:07:403,081
#CPM-Bee#中文大模型
Java中自增操作i++与++i的区别

Java中自增操作i++与++i的区别

在Java中,自增是一种非常常见的操作,在自增中,有两种写法,一种是前缀自增(++i),一种是后缀自增(i++)。这里主要简单介绍两种自增的差别。

2019/09/07 15:17:283,083
#java#编程
Eclipse安装SVN插件

Eclipse安装SVN插件

使用SVN进行项目的版本管理是非常流行的操作,这篇博客将描述Eclipse安装SVN的方法。

2017/09/01 15:48:483,087
#eclipse#svn
《Effective Java 第三版》笔记之一 创建静态工厂方法而不是使用构造器

《Effective Java 第三版》笔记之一 创建静态工厂方法而不是使用构造器

本文是Effective Java第三版笔记的第一个之创建静态工厂方法而不是使用构造器

2018/09/14 23:06:363,095
#effectivejava#java
GPQA Diamond:评估专家级推理能力的问答基准

GPQA Diamond:评估专家级推理能力的问答基准

通用人工智能(AGI)的进步需要可靠的评估基准。GPQA (Grade-Level Problems in Question Answering) Diamond 基准旨在衡量模型在需要深度推理和领域专业知识问题上的能力。该基准由纽约大学、CohereAI 及 Anthropic 的研究人员联合发布,其相关论文可在 arXiv 上查阅 (https://arxiv.org/pdf/2311.12022 )。GPQA Diamond是GPQA系列中最高质量的评测数据,包含198条结果。

2025/03/20 17:34:133,106
#GPQA#GPQADiamond
Microsoft Visual C++ 14.0 is required 的解决方案

Microsoft Visual C++ 14.0 is required 的解决方案

Microsoft Visual C++ 14.0 is required

2019/03/27 21:15:193,113
#MicrosoftVisualC++14.0isrequired#python
三层Dirichlet 过程(非参贝叶斯模型)-来自Machine Learning

三层Dirichlet 过程(非参贝叶斯模型)-来自Machine Learning

2018/04/20 22:20:243,123
#三层Dirichlet过程
TensorFlow学习——基本概念(1)

TensorFlow学习——基本概念(1)

TensorFlow基本概念

2019/03/27 21:18:223,128
#TensorFlow基本概念
浮动

浮动

2018/10/09 14:39:263,156
#浮动
Keras框架下的保存模型和加载模型

Keras框架下的保存模型和加载模型

Keras框架下的保存模型和加载模型

2019/03/27 21:19:463,156
#Keras框架下的保存模型和加载模型
Topic model相关文章汇总

Topic model相关文章汇总

2017/11/15 08:42:593,161
#主题模型
R语言操作数据库

R语言操作数据库

R语言操作数据库

2016-05-25 22:00:243,175
#R语言#数据库
hive数据操作

hive数据操作

hive的使用方法

2016-04-06 21:32:473,195
#hadoop#hive
如何把一个目录下的所有文件,合并成一个文件

如何把一个目录下的所有文件,合并成一个文件

java 读写操作

2016-10-11 09:14:463,195
#java#数据处理
深度学习技巧之一

深度学习技巧之一

2018/09/25 10:22:473,215
#机器学习#深度学习
 Keras框架下输出模型中间层学习到的表示的两种常用方式

Keras框架下输出模型中间层学习到的表示的两种常用方式

深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。

2019/04/10 20:26:103,219
#Keras#中间层表示
模型中的参数和超参数

模型中的参数和超参数

模型中的参数和超参数

2019/03/27 21:20:133,237
#模型中的参数和超参数
强化学习的数学基础之马尔可夫链(Markov Chain)

强化学习的数学基础之马尔可夫链(Markov Chain)

马尔可夫链(Markov Chain)是由马尔可夫性质推导出来的一种重要的概率模型。马尔科夫链是一种离散时间的随机过程,作为现实世界的统计模型,有很多应用。在热力学、统计力学、排队理论、金融领域等都有重要的应用价值。 作为一种离散时间的随机过程,与其对应的模型是马尔可夫过程(Markov Process),这是一种连续时间随机过程的模型。本节将主要介绍马尔科夫链。

2022/09/27 16:45:213,240
#强化学习#强化学习系列教程
大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型(Large Language Model,LLM)是近几年进展最大的AI模型。早期的深度学习架构语言模型以RNN为主,现在则基本上转成了Transformer的架构。尽管如此,Transformer本身也是有着不同的区别。而本文是大语言模型系列中的一篇,主要介绍RNN模型与Transformer之间的区别。

2023/04/27 22:02:333,241
#LLM#RNN
Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。

2020/05/31 17:42:243,244
#dask#dataframe
上一页
1...252627...39
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • 一文总结13个国内外ChatGPT平替产品:是时候可以不那么依赖ChatGPT了~
  • 论文中常见的英语表达
  • 是否需要使用NumPy代替Pandas处理数据以提高性能?
  • 不更改一行AI模型的代码加速你的模型训练过程——AI模型训练加速库Nebulgym简介
  • python操作数据库
  • 重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!
  • 全球最大10个的SaaS企业简介
  • 重磅!谷歌开源Gemini同源技术大模型Gemma,分别为70亿参数和20亿参数,同等规模参数评测极其优秀!