DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
原创博客

原创AI技术博客

探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

排序方式
按日期排序按浏览量排序
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

2023/05/31 00:33:363,480
#tokens#大语言模型
什么是推理大模型?DeepSeek R1推理大模型与DeepSeek V3模型的区别是什么?什么时候该使用推理大模型?

什么是推理大模型?DeepSeek R1推理大模型与DeepSeek V3模型的区别是什么?什么时候该使用推理大模型?

最近,随着DeepSeek R1的火爆,推理大模型也进入大众的视野。但是,相比较此前的GPT-4o,推理大模型的区别是什么?它适合什么样的任务?推理大模型是如何训练出来的?很多人并不了解。本文将详细解释推理大模型的核心内容。

2025/02/08 18:05:033,480
#DeepSeekR1#OpenAIo1
轮盘赌java算例

轮盘赌java算例

2018/03/21 10:42:453,485
#轮盘赌
DataLearnerAI发布中国国产开源大模型生态概览统计:国产开源大模型都有哪些?现状如何?

DataLearnerAI发布中国国产开源大模型生态概览统计:国产开源大模型都有哪些?现状如何?

随着GPT的一路爆火,国内大模型的开源生态也开始火热。各大商业机构和科研组织都在不断发布自己的大模型产品和成果。但是,众多的大模型产品眼花缭乱。为了方便大家追踪国产开源大模型的发展情况,DataLearnerAI发布了中国国产大模型生态系统全景统计(地址:https://www.datalearner.com/china-opensource-llm ),本文也将根据这个统计结果简单分析当前国产开源大模型的生态发展情况。

2023/11/10 17:26:563,487
#中文大模型#国产大模型
Sequence-to-Sequence model

Sequence-to-Sequence model

Sequence-to-Sequence model

2019/03/27 21:18:523,504
#Sequence-to-Sequencemodel
 Java多线程网络爬虫(时光网为例)

Java多线程网络爬虫(时光网为例)

Java多线程网络爬虫(时光网为例)

2016-09-26 08:27:063,506
#Java#网络爬虫
LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench 由加州大学伯克利分校、麻省理工学院和康奈尔大学的研究人员开发,是一个先进的评测基准套件,专门用于严格评估大语言模型 (LLMs) 在代码处理方面的能力,并解决现有基准测试的局限性。通过引入实时更新的问题集和多维度评估方法,LiveCodeBench 确保对 LLM 进行公平、全面和稳健的评估。

2025/03/09 19:55:143,507
#LiveCodeBench#大模型编程评测
神经网络发展简介

神经网络发展简介

看过很多书,都说了神经网络的进展,但总有一些小问题没有明白。这次基本上都明白了,记录一下。

2018/09/20 07:13:163,511
#深度学习#神经网络
网络爬虫存储数据的三种常见方式及其python实现

网络爬虫存储数据的三种常见方式及其python实现

网络爬虫

2019/03/27 21:14:293,512
#excel#Python
抛弃Spark?Flink会是下一代大数据计算引擎吗?

抛弃Spark?Flink会是下一代大数据计算引擎吗?

2018/09/21 17:10:373,518
#flink#spark
Eclipse打包Java工程并导出jar包

Eclipse打包Java工程并导出jar包

使用eclipse打包java工程并导出java包

2016-12-12 20:48:123,519
#程序
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。

2023/11/08 20:10:293,528
#RAG#reranker
《Effective Java 第三版》笔记之六 避免创建不必要的对象

《Effective Java 第三版》笔记之六 避免创建不必要的对象

2018/09/27 21:21:413,549
#effectivejava#java
网络爬虫中Json数据的解析

网络爬虫中Json数据的解析

网络爬虫中Json数据的解析

2016-09-09 08:29:173,581
#java#json
使用卷积神经网络进行手写识别

使用卷积神经网络进行手写识别

本文是发在Medium上的一篇博客:《Handwritten Equation Solver using Convolutional Neural Network》。本文是原文的翻译。这篇文章主要教大家如何使用keras训练手写字符的识别,并保存训练好的模型到本地,以及未来如何调用保存到模型来预测。

2019/06/23 22:35:533,585
#卷积神经网络#深度学习
吴恩达联合OpenAI推出免费的面向开发者的ChatGPT Prompt工程课程——ChatGPT Prompt Engineering for Developers

吴恩达联合OpenAI推出免费的面向开发者的ChatGPT Prompt工程课程——ChatGPT Prompt Engineering for Developers

昨天,吴恩达宣布与OpenAI联合推出了一个新的面向开发者的ChatGPT的Prompt课程。课程主要教授大家如何使用Prompt做ChatGPT的应用开发、使用ChatGPT的新方法、建立自己的个性化的Chatbot,以及最重要的,基于OpenAI的API来练习Prompt工程技巧!

2023/04/28 09:59:543,606
#AI教程#PromptEngineering
通过命令行的方式建立Dask集群

通过命令行的方式建立Dask集群

Dask的集群启动创建也很简单,有好几种方式,最简单的是采用官方提供dask-scheduler和dask-worker命令行方式。本文描述如何使用命令行方法建立Dask集群。

2020/05/06 11:41:093,611
#dask#python
text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化

text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化

OpenAI最新发布了GPT-3.5-Turbo-Instruct,这是一款强大的指令遵循大模型。尽管官方没有发布官方博客介绍,但我们将在本文中详细探讨这一模型的特点以及其在人工智能领域的价值。

2023/09/19 10:09:303,661
#GPT-3.5-Turbo-Instruct#指令大模型
大模型领域的GGML是什么?GGML格式的大模型文件与原有文件有什么不同?它是谁提出的?如何使用?

大模型领域的GGML是什么?GGML格式的大模型文件与原有文件有什么不同?它是谁提出的?如何使用?

GGML是在大模型领域常见的一种文件格式。HuggingFace上著名的开发者Tom Jobbins经常发布带有GGML名称字样的大模型。通常是模型名+GGML后缀,那么这个名字的模型是什么?GGML格式的文件名的大模型是什么样的大模型格式?如何使用?本文将简单介绍。

2024/01/20 10:48:013,666
#GGML#大模型加速
元宇宙企业Roblox究竟是一家什么样的企业

元宇宙企业Roblox究竟是一家什么样的企业

美国有一家上市企业,叫做Roblox,号称是元宇宙龙头企业,被市场炒的火热。这家企业到底是什么样的业务,可以被认为是一家纯正的元宇宙企业。本文根据我收集的资料,为大家介绍一下。

2021/11/19 23:05:243,713
#元宇宙#初创企业
解决大语言模型的长输入限制:MetaAI发布MegaByte最高支持几百万上下文输入!

解决大语言模型的长输入限制:MetaAI发布MegaByte最高支持几百万上下文输入!

尽管OpenAI的ChatGPT很火爆,但是这类大语言模型有一个非常严重的问题就是对输入的内容长度有着很大的限制。例如,ChatGPT-3.5的输入限制是4096个tokens。MetaAI在前几天提交了一个论文,提出了MegaByte方法,几乎可以让模型接受任意长度的限制!

2023/10/09 22:43:093,730
#long-context#MegaByte
Dask的Merge操作性能对比

Dask的Merge操作性能对比

在前面的博客中,我们已经对`Dask`做了一点简单的介绍了,在这篇博客中我们来对比一下`Dask`的`DataFrame`在不同条件下的运算性能,主要是连接操作的性能(merge)。

2020/05/24 18:32:523,734
#dask#python
123

123

123123

2020/08/03 10:34:513,756
#123
机器学习(人工智能)在工业中应用步骤入门

机器学习(人工智能)在工业中应用步骤入门

机器学习是实现人工智能最重要的方法之一,包括深度学习等都属于机器学习中的一种方法。因此,机器学习的应用被认为是实现人工智能应用的重要途径。人工智能的应用目标是使用计算机(机器)来代替或者辅助人工来完成某项任务。机器学习在解决业务问题的应用需要谨慎考虑。本文提供一些步骤可以参考。

2018/11/20 11:37:043,759
#人工智能#机器学习
上一页
1...272829...39
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • 重磅数据集分享:大规模多模态语料库之悟道数据集(WuDaoCorpora 2.0)
  • 需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~
  • Ubuntu 命令行 指定GPU 运行 Python 程序
  • 重磅!Meta将PyTorch移交给Linux基金会!
  • 可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数
  • Anubis——纽约大学计算机学生建立的学习管理系统和CloudIDE简介
  • 机器学习(人工智能)在工业中应用步骤入门
截止目前中文领域最大参数量的大模型开源:上海人工智能实验室开源200亿参数的书生·浦语大模型(InternLM 20B系列),性能提升非常明显!