标签为 #pytorch# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。

阅读 2590

12倍推理速度提升!Meta AI开源全新的AI推理引擎AITemplate

为了提高AI模型的推理速度,降低在不同GPU硬件部署的成本,Meta AI研究人员在昨天发布了一个全新的AI推理引擎AITemplate(AIT),该引擎是一个Python框架,它在各种广泛使用的人工智能模型(如卷积神经网络、变换器和扩散器)上提供接近硬件原生的Tensor Core(英伟达GPU)和Matrix Core(AMD GPU)性能。

阅读 2532

TorchVision最新0.13版本发布!

PyTorch最新的1.12版本已经在前天发布。而其中TorchVision是基于PyTorch框架开发的面向CV解决方案的一个PyThon库,其最主要的特点是包含了很多流行的数据集、模型架构以及预训练模型等。本次也随着PyTorch1.12的发布更新到了v0.13。此次发布包含几个非常好的提升,值得大家关注。

阅读 2195

PyTorch终于支持苹果的M1芯片了!

自从苹果发布M1系列的自研芯片开始,基于ARM架构的电脑处理器开始大放异彩。而强大的M1芯片的能力也让很多Mac用户高兴很久。而就在现在,M1也开始支持PyTorch的深度学习框架了。PyTorch官网刚刚宣布,经过和Apple的Metal工程师队伍的合作,PyTorch支持Mac的GPU加速了。

阅读 1467

TensorFlow与PyTorch近几年发展对比

Tensorflow和PyTorch是深度学习最流行的两个框架,二者都有坚定的支持者。一般认为由于Google的支持,TensorFlow的社区支持比较好,在工业应用广泛。但是尽管有keras加持,但易用性方面依然被认为不如PyTorch。而后者最早由Facebook人工智能团队开发。由于其易用性,被认为在科学研究中有广泛使用。那么,最近几年二者发展如何,是否实际还如之前的观点一样,这里AssemblyAI的一个作者做了一些对比。

阅读 2912