仙宫云4090显卡租赁

大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~

Card image cap
检索增强生成(RAG)

大模型检索增强生成是一种结合了大规模语言模型的自动生成能力和针对特定数据的检索机制,以提供更准确、信息丰富的输出内容的技术。

查看RAG合集
Card image cap
Long Context

大模型对长上下文的处理能力在于它们能够理解和维持较长篇幅的文本连贯性,有助于提升质量,以及对复杂问题和讨论的理解和回应质量。

LongContext合集
Card image cap
AI Agent

大模型的AI Agent是一种高级智能系统,能够理解复杂的指令和查询,并以人类般的方式生成响应、执行任务或提供决策支持。

AI Agent合集
聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论

大模型应用中一个非常重要的问题就是大模型的响应速度。尤其是作为聊天应用来说,在用户输入之后,大模型可以在多短的时间内给出回应对于用户体验来说影响巨大。这里有2个问题经常会被大家所关注,一个是大模型每秒输出多少个tokens就可以满足用户的日常聊天使用,另一个问题是单张显卡最多可以支撑多少个用户的聊天需求。在前几天的vllm meetup上,贾扬清给出了一些讨论,他认为我们目前可能高估了大模型的聊天应用成本。

让大模型支持更长的上下文的方法哪个更好?训练支持更长上下文的模型还是基于检索增强?

在大语言模型中,上下文长度是指模型可以考虑的输入数据的数量。更长的上下文在大语言模型的实际应用中有非常重要的价值。当前,让大语言模型支持更长的上下文有两种常用的方法,一种是训练支持更长上下文长度的模型,扩展模型的输入,另外一种是检索增强生成的方法(Retrieval Augmentation Generation,RAG)。但二者应该如何选择,这是一个很少能直接比较的问题。为此,英伟达(Nvidia)的研究人员做了一个详细的比较。

解决大语言模型的长输入限制:MetaAI发布MegaByte最高支持几百万上下文输入!

尽管OpenAI的ChatGPT很火爆,但是这类大语言模型有一个非常严重的问题就是对输入的内容长度有着很大的限制。例如,ChatGPT-3.5的输入限制是4096个tokens。MetaAI在前几天提交了一个论文,提出了MegaByte方法,几乎可以让模型接受任意长度的限制!

华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。

2023/10/09 11:45:03
阿里开源最新Qwen-14B:英文理解能力接近LLaMA2-70B,数学推理能力超过GPT-3.5!

通义千问是阿里巴巴推出的一个大语言模型,此前开源的Qwen-7B引起了广泛的关注,因为他的理解能力很强但是参数规模很小,因此受到了很多人的欢迎。而目前再次开源全新的Qwen-14B的模型,参数规模142亿,但是它的理解能力接近700亿参数规模的LLaMA2-70B,数学推理能力超过GPT-3.5。

2023/09/26 11:55:13
重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!

几分钟之前,OpenAI宣布ChatGPT支持多模态,目前已经支持语音的输入、语音的输出、理解图片的输入!不过目前似乎仅限于客户端~官方说的是未来2周内企业和Plus用户可以使用,后面会普及到其它用户!

2023/09/26 10:30:50
截止目前中文领域最大参数量的大模型开源:上海人工智能实验室开源200亿参数的书生·浦语大模型(InternLM 20B系列),性能提升非常明显!

上海人工智能实验室是国内顶尖的人工智能实验室,此前在大模型领域,他们与商汤科技发布的书生·浦语系列在国内引起了很大的关注。此次,他们又开源了一个全新的200亿参数规模的大语言模型InternLM 20B,应该是截止目前中文领域开源的参数规模最大的一个大模型了。

2023/09/22 11:55:50
639
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。

2023/09/22 11:52:38
LM-SYS开源包含人类偏好的3.3万条真实对话语料:可用于RLHF的训练过程!

LM-SYS全称Large Model Systems Organization,是由加利福尼亚大学伯克利分校的学生和教师与加州大学圣地亚哥分校以及卡内基梅隆大学合作共同创立的开放式研究组织。该团队在2023年3月份成立,目前的工作是建立大模型的系统,是聊天机器人Vicuna的发布团队。今天开源 了包含3.3万包含真实人类偏好的对话数据集和3000条专家标注的对话数据集:Chatbot Arena Conversation Dataset和MT-bench人工注释对话数据集。

OpenAI最新的文本生成图像大模型DALL·E3发布!生成的图像不忽略每一个细节的文本!

DALL·E 系列是由 OpenAI 开发的一系列基于大型语言模型的文本到图像生成系统。它们的核心目标是将文本描述转化为高度精确的图像。DALL·E2在2022年4月发布,但是一直没有公开使用,一年半后的2023年9月21日,OpenAI发布第三代DALL·E3,并承诺将与ChatGPT集成。

关于GPT-4的多模态版本最新消息:可能的代号是Gobi,也许会比Google下一代LLM的Gemini更早发布

The Information最新消息透露OpenAI正在抓紧准备GPT-4多模态版本的发布,可能称为GPT4-Vision。

2023/09/20 11:23:28
155
如何让大模型提取更有信息密度的文本摘要?SalesforceAI最新的密度链提示方法Chain of Density Prompting

基于文本做文本摘要的时候,摘要所包含的信息密度是一个非常重要的问题。正常情况下我们希望文本摘要既能覆盖更多的重要信息,又要保持简洁和连贯。SalesforceAI与MIT等机构的研究人员联合发布了一个最新的Prompt技巧,称为密度链提示方法(Chain of Density Prompting),可以提取有信息含量的简洁摘要。

text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化

OpenAI最新发布了GPT-3.5-Turbo-Instruct,这是一款强大的指令遵循大模型。尽管官方没有发布官方博客介绍,但我们将在本文中详细探讨这一模型的特点以及其在人工智能领域的价值。

LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。

大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

大模型的长输入在很多场景下都有非常重要的应用,如代码生成、故事续写、文本摘要等场景,支撑更长的输入通常意味着更好的结果。昨天,斯坦福大学、加州伯克利大学和Samaya AI的研究人员联合发布的一个论文中有一个非常有意思的发现:当相关信息出现在输入上下文的开始或结束时,大模型的性能通常最高,而当大模型必须访问长上下文中间的相关信息时,性能显著下降。本文将简单介绍一下这个现象。