大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
开源软件在现代互联网技术的发展中扮演者重要的作用。很多技术的进步和发展都是由开源软件推动的。而开源软件的发展离不开背后强大的开源组织的管理。本文列举最著名的五个开源组织,简述其背景,欢迎大家阅读。
Llama3是MetaAI开源的最新一代大语言模型。一发布就引起了全球AI大模型领域的广泛关注。这是MetaAI开源的第三代大语言模型,也是当前最强的开源模型。但相比较第一代和第二代的Llama模型,Llama3的升级之处有哪些?本文以图表的方式总结Llama3的升级之处。
大语言模型(Large Language Model,LLM)是近几年进展最大的AI模型。早期的深度学习架构语言模型以RNN为主,现在则基本上转成了Transformer的架构。尽管如此,Transformer本身也是有着不同的区别。而本文是大语言模型系列中的一篇,主要介绍RNN模型与Transformer之间的区别。
前段时间,康奈尔大学开源了LLMTune框架(https://www.datalearner.com/blog/1051684078977779 ),这是一个可以在48G显存的显卡上微调650亿参数的LLaMA模型的框架,不过它们采用的方法是将650亿参数的LLaMA模型进行4bit量化之后进行微调的。今天华盛顿大学的NLP小组则提出了QLoRA方法,依然是支持在48G显存的显卡上微调650亿参数的LLaMA模型,不过根据论文的描述,基于QLoRA方法微调的模型结果性能基本没有损失!
RWKV是一个结合了RNN与Transformer双重优点的模型架构。由香港大学物理系毕业的彭博首次提出。简单来说,RWKV是一个RNN架构的模型,但是可以像transformer一样高效训练。今天,HuggingFace官方宣布在transformers库中首次引入RNN这样的模型,足见RWKV模型的价值。
苹果刚刚发布了一个全新的机器学习矿机MLX,这是一个类似NumPy数组的框架,目的是可以在苹果的芯片上更加高效地运行各种机器学习模型,当然最主要的目的是大模型。
对于刚接触使用Python的同学来说,Python强大的生态与优秀的开源工具应该印象十分深刻。同时对于一些已经在使用Python解决问题的童鞋来说,使用pip来安装一些别人提供的工具应该已经熟悉了。当然,也有一些同学应该也听说可以使用conda来安装一些第三方的开源包。那么,python的包管理工具pip是一个什么样的东西?conda作为一个替代者或者补充,与pip有什么区别,二者分布适合什么情况下使用呢?本文将根据我的个人经验与观点为大家做一个简单的说明。
Awesome ChatGPT Prompts是由JavaScript开发者Fatih Kadir Akın创建的一个网站和应用,里面收集了160多个关于ChatGPT的Prompt模板,可以让ChatGPT变成Linux终端、JavaScript控制台、Excel页面等。这些Prompts收集自优秀的实践案例。
在做LeetCode题目的时候,有一类题目是关于大数运算的。比如,全排列计算或者组合运算,在使用C语言或者Java代码解决这类问题的时候都会遇到变量数值超过阈值的情况。一般来说需要自己构造字符串数组或者是其它数组来存储超过长度的数值。但是,使用Python语言处理这类问题时候却毫无压力,这类题目的计算不会有任何问题。本文将从Python底层实现解释这个问题。
随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!
如今,自然语言处理的预训练模型被广泛运用在各个领域。各大企业和组织都在追求各种大型的预训练模型。但是当你问我们应该使用哪一个预训练模型来解决问题的时候,通常没有统一的答案,一般来说它取决于下游的任务,也就是说需要根据任务类型来选择模型。 而谷歌认为这不是一个正确的方向,因此,本周,谷歌提出了一个新的NLP预训练模型框架——Unifying Language Learning Paradigms(简称UL2)来尝试使用一个模型解决多种任务。