
CNN经典算法VGGNet介绍
VGGNet(Visual Geometry Group)是2014年又一个经典的卷积神经网络。VGGNet最主要的目标是试图回答“如何设计网络结构”的问题。随着AlexNet提出,很多人开始利用卷积神经网络来解决图像识别的问题。一般的做法都是重复几层卷积网络,每个卷积网络之后接一些池化层,最后再加上几个全连接层。而VGGNet的提出,给这些结构设计带来了一些标准参考。
加载中...
探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

VGGNet(Visual Geometry Group)是2014年又一个经典的卷积神经网络。VGGNet最主要的目标是试图回答“如何设计网络结构”的问题。随着AlexNet提出,很多人开始利用卷积神经网络来解决图像识别的问题。一般的做法都是重复几层卷积网络,每个卷积网络之后接一些池化层,最后再加上几个全连接层。而VGGNet的提出,给这些结构设计带来了一些标准参考。

1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。

深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。

Keras中predict()方法和predict_classes()方法的区别

Sequence-to-Sequence model

tf.nn.softmax_cross_entropy_with_logits函数

Microsoft Visual C++ 14.0 is required

本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。

之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:

在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。

使用预训练模型处理NLP任务是目前深度学习中一个非常火热的领域。本文总结了8个顶级的预训练模型,并提供了每个模型相关的资源(包括官方文档、Github代码和别人已经基于这些模型预训练好的模型等)。

Encoder-Decoder的深度学习架构是目前非常流行的神经网络架构,在许多的任务上都取得了很好的成绩。在之前的博客中,我们也详细介绍了该架构(参见深度学习之Encoder-Decoder架构)。本篇博客将详细讲述Attention机制。

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。

您刚刚经历了一个耗时的过程,将一堆数据加载到python对象中。 也许你从数千个网站上爬取了数据。也许你计算了pi的数值。如果您的笔记本电脑电池耗尽或python崩溃,您的信息将丢失。 Pickling允许您将python对象保存为硬盘驱动器上的二进制文件。 在你pickle你的对象后,你可以结束你的python会话,重新启动你的计算机,然后再次将你的对象加载到python中。

广告分配问题属于运筹中的优化问题。一般情况下,我们期望有个最大化收益,但同时需要保证合约的完成。因此,这是一个带不等式约束的最优化问题。由于广告数量和用户数量很多,因此,求解的难度很高。在这篇文章中,作者推导了原问题的拉格朗日函数的系数之间的关系,大大降低了求解的难度。这里将简要介绍原理和推导过程。