
月之暗面发布Kimi Claw:一个在云端拥有40G空间的24×7运行的OpenClaw,基于Kimi模型驱动
就在刚才,Moonshot AI(Kimi 团队)推出了 Kimi Claw(目前为 Beta 版)。这项服务让普通用户无需本地安装或维护服务器,就能快速获得一个类似 OpenClaw 的云端 AI 助手,随时在线、具备长期记忆和实际执行能力。
加载中...
汇总「AI」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

就在刚才,Moonshot AI(Kimi 团队)推出了 Kimi Claw(目前为 Beta 版)。这项服务让普通用户无需本地安装或维护服务器,就能快速获得一个类似 OpenClaw 的云端 AI 助手,随时在线、具备长期记忆和实际执行能力。

AIME 2026 是基于美国数学邀请赛(American Invitational Mathematics Examination)2026 年问题的评测基准,用于评估大语言模型在高中水平数学推理方面的表现。该基准包含 15 个问题,覆盖代数、几何、数论和组合数学等领域。模型通过生成答案并与标准答案比较来计算准确率。

OpenAI 发布了一个全新的帮助企业构建AI Agent的平台:OpenAI Frontier。这个平台不再是一个强大的模型或者单体应用,而是一种“基础设施能力”,是旨在改变企业如何使用 AI 的平台。

Moltbook 是一个创新的社交网络平台,专为 AI Agent 设计,在这里它们可以分享内容、参与讨论,并进行投票和点赞活动。人类用户仅限于观察者角色,无法直接互动。这个平台类似于 Reddit 的结构,允许 AI Agent 创建子社区(称为 submolt)、发布帖子、评论,并通过 API 接口进行操作,而不是视觉图形界面。

Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。

本文整理了 Andrej Karpathy 在 2025 年底关于 AI Agent 编程的核心观点。基于其使用 Claude Code 等大模型的真实工程经验,Karpathy 认为软件工程正从“手动编码”转向“由 AI Agent 执行、人类定义目标与约束”的新范式。文章同时分析了 AI Agent 在效率提升之外带来的工程风险、技能退化与内容质量问题,并指出 2026 年将是行业系统性消化 AI Agent 能力的关键一年。

ClawdBot 是一款开源AI代理工具,旨在帮助用户在本地设备上处理各种任务,在科技社区中迅速获得关注。它于2025年底由开发者Peter Steinberger(@steipete)推出,基于Anthropic的Claude模型,名称结合了“Claw”(龙虾钳子)和“Claude”,并以龙虾作为吉祥物,象征其适应性和本地运行特性。该工具强调本地优先的设计,用户可以完全控制数据和过程,避免对云服务的依赖。

就在大家还在争论 AI 编程上限的时候,Cursor 团队发布了一份非常值得大家关注的内部测试报告,展示了当我们将 Agent 的规模和运行时间推向极致时,会发生什么。这不仅仅是简单的代码生成,而是让 AI 像人类团队一样协作,构建百万行级别的项目。这项实验为我们揭示了 AI 在编码领域的潜力与局限,值得每位开发者关注。

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

就在昨天,Anthropic 发布了一套非常重要的工程方案,专门针对这些挑战而设计:基于“Initializer Agent + Coding Agent”的双 Agent 架构。

11 月 13 日,SimilarWeb 发布了最新的 GenAI 访问流量分布。从数据走势可以明显看到,大模型行业正在经历从“ChatGPT 绝对统治”向“多极竞争”的结构性转变。 一年前,ChatGPT 占据了超过 86% 的流量份额,整个行业几乎处于单中心状态。然而在过去的 12 个月里,大模型的多样化发展、不同厂商的产品升级、企业用户需求变化,都推动了新一轮的流量重分配。

2025 年 11 月 13 日,OpenAI 团队在 Reddit 上进行了一场针对 GPT-5.1、模型自定义能力、开发者 API、未来路线图 的公开 AMA(Ask Me Anything)。这次交流并不是简单的功能答疑,而是罕见地从内部视角解释了他们如何思考安全策略、模型行为塑形、推理模式优化、人格定制逻辑、多模态进展以及实际工程实现细节。

OpenAI 于 2025 年 11 月正式发布 GPT-5 系列的阶段性更新版本 —— GPT-5.1。这一更新并非针对模型架构的全面重做,而是围绕“对话体验、一致性、任务适配性”进行的系统化优化。在 GPT-5 推出后,业界对其不稳定回复、语气波动、任务深度控制不足等表现提出了不少批评,因此本次更新可视为 OpenAI 对这些问题的集中调整。

BrowseComp是一个用于评估AI代理网页浏览能力的基准测试。它包含1266个问题,这些问题要求代理在互联网上导航以查找难以发现的信息。该基准关注代理在处理多跳事实和纠缠信息时的持久性和创造性。OpenAI于2025年4月10日发布此基准,并将其开源在GitHub仓库中。

Anthropic正式发布最新一代入门级模型Claude Haiku 4.5。相较上一代小模型,Haiku 4.5 在编码、推理与“计算机使用/子代理编排”等关键生产力场景上实现逼近甚至局部追平 Sonnet 4,但价格更低、速度更快,定位于“面向规模化落地的高性价比主力”。

Anthropic 正式推出全新功能 Claude Skills,旨在让通用 AI 代理(Agent)具备专业领域能力。该功能允许用户通过创建包含 SKILL.md 文件的技能文件夹,为 Claude 注入可执行脚本、模板与资源,实现 Excel 处理、PPT 生成等特定任务的自动化操作。与传统提示词不同,Skills 采用结构化加载与本地沙箱执行机制,兼顾安全性与效率。

就在昨天,2025年10月7日,Google DeepMind 正式发布其最新模型——Gemini 2.5 Computer Use。该模型基于 Gemini 2.5 Pro 的视觉理解与推理能力,新增了“界面交互(UI 控制)”能力,能够在浏览器或移动端界面上像人类那样点击、输入、滚动、选择控件等操作。

就在今日,OpenAI正式推出了 Sora 2 ——其旗舰级视频与音频生成模型。相比2024年2月发布的初代 Sora,本次升级带来了断层级的真实感与显著增强的可控性。它不仅能更好地遵循物理规律生成视频,还首次实现了同步对话与环境音效的生成,并通过全新 iOS 应用“Sora”开放给公众使用。

智谱AI于2025年7月发布了Zread。这款产品能够利用其大模型能力,结合类似Deep Research的Agent技术,对GitHub项目进行深度解读和问答。其价值在于将强大的模型能力通过优秀的工程化设计,变成了一个真正“好用”的工具。它解决的正是那种“代码就在那里,但我就是看不懂”的尴尬,这种体验是单纯聊天机器人无法替代的。

根据TheInformaiton的披露,近期OpenAI更新了他们最新财务预测(截至2025年第三季度)。这份收入预测展示了当前OpenAI的收入情况,并描绘了一幅引人注目的未来图景。与2025年第一季度OpenAI自己的预测相比,新数据不仅上调了收入预期,也揭示了公司因基础设施投入而面临的巨大现金消耗压力。本文将简单解读一下这份数据,包括OpenAI的收入情况,不同产品占比,如ChatGPT的比重等。

今日,Moonshot AI正式发布了最新旗舰模型 Kimi K2-Instruct-0905。这是一款基于混合专家架构(MoE)的前沿大语言模型,总参数规模达到 1万亿,激活参数为 320亿,不仅在编码智能上实现了断层式提升,更凭借 256K超长上下文 成为当前同类产品中的佼佼者。官方称其在公共基准和真实智能体任务上的表现均有显著突破,已对标并超越部分国际顶尖模型。

就在几个小时前,OpenAI 发布了全新的 GPT Realtime 大模型。这是一个 Speech-to-Speech(S2S)模型,能通过单个模型与 API完成从音频输入到音频输出的全流程,显著降低交互延迟并充分保留语音细节。 GPT Realtime 以“端到端语音理解—推理—合成”为核心路径,解决了传统“识别—推理—合成”多阶段带来的延迟与风格割裂问题。