标签为 #大模型评测# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

GPQA: 可以防止使用谷歌作弊的研究生级别难度的大模型专业能力评测基准(A Graduate-Level Google-Proof Q&A Benchmark)

研究生级别的 **Google 防查找问答基准测试**(即Graduate-Level Google-Proof Q&A Benchmark,简称 GPQA)是大型语言模型(LLM)面临的最具挑战性的评估之一。GPQA 旨在推动人工智能能力的极限,提供一个严格的测试平台,不仅评估模型的事实记忆能力,还考察其在专业科学领域的深度推理和理解能力。本篇博文将客观介绍 GPQA,涵盖它的起源、目的、组成部分,以及领先的大型语言模型在这个高要求基准测试中的表现。

阅读 1303

LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench 由加州大学伯克利分校、麻省理工学院和康奈尔大学的研究人员开发,是一个先进的评测基准套件,专门用于严格评估大语言模型 (LLMs) 在代码处理方面的能力,并解决现有基准测试的局限性。通过引入实时更新的问题集和多维度评估方法,LiveCodeBench 确保对 LLM 进行公平、全面和稳健的评估。

阅读 3063

SWE-Lancer:OpenAI发布的一个全新大模型评测基准,用来测试大模型解决真实世界软件工程的能力

短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。

阅读 296

MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准

大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P

阅读 2230

大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍

近年来,大语言模型(LLM)的能力飞速提升,但评测基准的发展却显得滞后。以广泛使用的MMLU(大规模多任务语言理解)为例,GPT-4、Claude等前沿模型已能在其90%以上的问题上取得高分。这种“评测饱和”现象导致研究者难以精准衡量模型在尖端知识领域的真实能力。为此,Safety for AI和Scale AI的研究人员推出了Humanity’s Last Exam大模型评测基准。这是一个全新的评测基准,旨在成为大模型“闭卷学术评测的终极考验”。

阅读 2116

Arena Hard:LM-SYS推出的更难更有区分度的大模型评测基准

评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。

阅读 734

DataLearnerAI-GPT:可以回答关于大模型评测结果的GPT

最近自定义GPTs非常火热,出现了大量的自定义GPT,可以完成各种各样的有趣的任务。DataLearnerAI目前也创建了一个DataLearnerAI-GPT,目前可以回答大模型在不同评测任务上的得分结果。这些回答是基于OpenLLMLeaderboard数据回答的。未来会考虑增加更多信息,包括DataLearner网站上所有的大模型博客和技术介绍。

阅读 1193

DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。

阅读 12366