大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
OpenAI是全球最著名的人工智能研究机构,发布了许多著名的人工智能技术和成果,如大语言模型GPT系列、文本生成图片预训练模型DALL·E系列、语音识别模型Whisper系列等。由于这些模型在各自领域都有相当惊艳的表现,引起了全世界广泛的关注。
刚刚,StabilityAI宣布Stable Diffusion2.1发布。距离Stable Diffusion2.0大版本发布刚2个星期,2.1版本就发布了,2.1版本有诸多改进功能。
Whisper是由Open AI训练并开源的语音识别模型,它在英语语音识别方面接近人类水平的鲁棒性和准确性。该模型于2022年9月21日发布之后引起了广大的关注。由于模型的准确性太过惊人,大家已经认为可以直接用于视频的配音制作了。而今天有人发现Whisper的GitHub上有了一个新的提交记录,显示Whisper V2版本即将来临。
12月1日OpenAI官宣了其目前最强的AI对话系统之后,大家发现这个强大的系统能做的事情远超过大家的想象。我们也在第一时间发布了相关的博客:https://datalearner.com/blog/1051669904657253 。由于这个系统实在是太过强大,大家发现的能力越来越强。连Musk也在几个小时之前感叹这个系统是so much better at bullshit than they are!在这篇博客中,我们将收集关于这个系统目前的使用案例,给大家一个更加全面的展示结果。
2022年的PyTorch Conference在新奥尔良举办。刚刚会上的keynote官宣PyTorch2.0版本即将到来。PyTorch是目前最流行的深度学习框架之一,它的易用性被广大的用户所喜爱。关于PyTorch2.0,官方透露了一些值得期待的特性。
今天,OpenAI公布了最新的一个基于AI的对话系统ChatGPT,是基于GPT3.5微调的结果,试用显示效果惊人!
自然语言处理预训练大模型在最近几年十分流行,如OpenAI的GPT-3模型,在很多领域都取得了十分优异的性能。谷歌的PaLM也在很多自然语言处理模型中获得了很好的效果。而昨天,PapersWithCode发布了一个学术论文处理领域预训练大模型GALACTICA。功能十分强大,是科研人员的好福利!
近几年语言模型的发展速度很快,各种大语言预训练模型的推出让算法在各种NLP的任务中都取得了前所未有的成绩。其中2017年谷歌发布的Attention is All You Need论文将transformer架构推向了世界,这也是现在最流行的语言模型结构。威斯康星大学麦迪逊分校的统计学教授Sebastian Raschka总结了6中Language Transformer的使用方法。值得一看。
The Annotated Transfomer是哈佛大学的研究人员于2018年发布的Transformer新手入门教程。这个教程从最基础的理论开始,手把手教你按照最简单的python代码实现Transformer,一经推出就广受好评。2022年,这个入门教程有了新的版本。
Batch Normalization(BN)是深度学习领域最重要的技巧之一,最早由Google的研究人员提出。这个技术可以大大提高深度学习网络的收敛速度。简单来说,BN就是将每一层网络进行归一化,就可以提高整个网络的训练速度,并打乱训练数据,提升精度。但是,BN的使用可以在很多地方,很多人最大的困惑是放在激活函数之前还是激活函数之后使用,著名机器学习领域的博主Santiago总结了这部分需要注意的内容。
Kaggle是机器学习竞赛平台当之无愧的老大,除了提供了平台让企业和研究机构发布机器学习相关竞赛来让大家竞技和交流以外,他们还提供了免费的编程平台让大家使用免费的GPU和内存来训练模型和测试模型效果。而昨天,Kaggle升级了这些免费资源服务。
Hugging Face一直在努力支持深度学习,但是,这只是深度学习的一部分。传统统计机器学习领域里面最重要的工具Scikit-learn如今终于和深度学习的开源标杆工具Hugging Face联手。
kaggle是各类机器学习竞赛的著名平台,上面聚集了大量的机器学习比赛和数据集,也有大量的数据处理相关专业人员。每年官方都会向平台用户发放问卷,调查数据科学家的工具使用和平台采用情况。今年的调查结果也在两天前发出,有很多有意思的结论。
预测在全球决策中发挥着关键作用。例如,关于COVID-19扩散的预测为国家封锁提供了信息,而经济预测则影响了利率的制定。这些预测通常依赖于人类专家的仔细判断,他们必须考虑来自各种来源的数据。由于人工智能系统能够处理大量的数据,它们在这个领域有可能非常有用。 为此,ML Safety举办了一个关于AI预测的竞赛,比赛的目的是建立一个机器学习模型,做出准确和校准的预测。
如何估计大模型推理或者训练所需要的显存大小?HuggingFace官方工具Model Memory Calculator,一键计算大模型显存需求~
AutoGPT是如何让GPT-4自动帮你完成任务的——最火的AutoGPT原理解析!
如何用7.7亿参数的蒸馏模型超过5400亿的大语言模型——Google提出新的模型蒸馏方法:逐步蒸馏(Distilling step-by-step)详解
开源领域大语言模型再上台阶:Databricks开源1320亿参数规模的混合专家大语言模型DBRX-16×12B,评测表现超过Mixtral-8×7B-MoE,免费商用授权!
强烈推荐!清华大学100亿参数规模的免费商用授权大模型:CPM-Bee 10B
MBA与数据分析师危矣?最新内测版本的ChatGPT已经可以针对excel自动做数据分析和异常分析了!
OpenAI正式开放ChatGPT Team订阅计划,价格每个月贵25%,更多的GPT-4,附ChatGPT付费计划对比