几个小时前,OpenAI官方宣布开放ChatGPT的系统指令设置功能。主要就是现在你可以为自己的ChatGPT设置一个系统级别的指令,按照你的偏好,来回复所有问题。
当前大模型本质是一种大语言模型(Large Language Models, LLM),其核心能力是对语言的处理。良好的意图识别和文本生成能力让LLM超越了之前的模型,有了巨大的实用价值。但是,现实问题涉及了很多超越语言模型之外的能力,如基于最新数据的文本摘要、向用户提供实时数据分析和可视化结果、为代码提供debugging等。目前,让LLM解决这些问题的一个最有前景的方向就是建立大模型驱动的自动代理。也就是让LLM作为核心控制者来学会使用不同工具,进而完成最终任务。
LLaMA是由Meta开源的一个大语言模型,是最近几个月一系列开源模型的基础模型。包括著名的vicuna系列、LongChat系列等都是基于该模型微调得到。可以说,LLaMA的开源促进了大模型在开源界繁荣发展。而刚刚,微软官方宣布Azure上架LLaMA2模型!这意味着LLaMA2正式发布!
ChatGPT的Code Interpreter插件让ChatGPT突破了大语言模型本身只能做文本处理的限制,使其可以通过生成并执行Python代码来实现强大的数据分析、图片生成、视频数据处理等操作,大大拓展了ChatGPT的实用范围和价值。在此前的文章中,我们已经分析了Code Interpreter插件的官方实现。而今天,LangChain的官方博客也推出了一种类似的开源方案,让开源模型也可以实现ChatGPT的Code Interperter插件。我们简要描述一下这个方案。
文本embedding是当前大模型应用中一个十分重要的角色。在长上下文支持、私有数据问答等方面有非常重要的应用。但是相比较开源领域快速发布的大模型节奏,开源的embedding模型和数据却非常少。今天,GPT4All宣布在其软件中增加embedding的支持,这是一个完全免费且可商用的产品,最重要的是可以在我们本地用CPU来做推理。
NomicAI推出了GPT4All这款软件,它是一款可以在本地运行各种开源大语言模型的软件。GPT4All将大型语言模型的强大能力带到普通用户的电脑上,无需联网,无需昂贵的硬件,只需几个简单的步骤,你就可以使用当前业界最强大的开源模型。
Anthropic是一家专注于人工智能(AI)研究的公司,由OpenAI的前首席科学家Ilya Sutskever和Dario Amodei共同创立。Claude是Anthropic公司发布的基于transformer架构的大语言模型,被认为是最接近ChatGPT的商业产品。今天,Anthropic宣布Claude 2正式开始上架。
Code Interpreter是ChatGPT官方提供的一个插件。使用这个插件之后,ChatGPT可以通过生成Python代码来解决你的问题。在上周,Code Interperter已经完全开放给所有的付费用户,在大家使用了一段时间之后,已经有很多人通过机智的prompt来获取了Code Interpreter背后的执行环境和系统prompt信息等。本文针对这些获取的信息做一个总结,供大家参考。
几个小时前SemiAnalysis的DYLAN PATEL和DYLAN PATEL发布了一个关于GPT-4的技术信息,包括GPT-4的架构、参数数量、训练成本、训练数据集等。本篇涉及的GPT-4数据是由他们收集,并未公开数据源。但是内容还是有一定参考性,大家自行判断。
LangChain是当前大模型应用开发领域里面最火热的框架。由于其提供了丰富的数据访问接口、各种大模型的交互接口以及很多构造大模型应用所需要的方法与实践工具,受到了很多人的关注。然而,今天Hacker News上的一位开发者直接提出LangChain是一个无用的框架,引起了很多人的共鸣。很多人都表示,在实际开发中,LangChain有很多问题,可能并不适合用来做大模型应用开发。
吴恩达的DeepLearningAI在今天和LangChain的创始人一起合作发布了一个最新的基于LangChain使用LLM构建私有数据的问答系统和聊天机器人的课程(课程名:《LangChain: Chat with Your Data》)。LangChain是大语言模型应用开发领域目前最火的开源库。集成十分多的优秀特性,可以帮助我们非常简单构建LLM的应用。
大模型虽然效果很好,但是对资源的消耗却非常高。更麻烦的其实不是训练过程慢,而是峰值内存(显存)的消耗直接决定了我们的硬件是否可以来针对大模型进行训练。最近LightningAI官方总结了使用Fabric降低大模型训练内存的方法。但是,它也适用于其它场景。因此,本文总结一下相关的方法。
大语言模型的训练和微调的硬件资源要求很高。现行主流的大模型训练硬件一般采用英特尔的CPU+英伟达的GPU进行。主要原因在于二者提供了符合大模型训练所需的计算架构和底层的加速库。但是,最近苹果M2 Ultra和AMD的显卡进展让我们看到了一些新的希望。
如何使用git从GitHub上下载项目、更新远端项目并提交本地的更改
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例
未经证实的GPT-4技术细节,关于GPT-4的参数数量、架构、基础设施、训练数据集、成本等信息泄露,仅供参考
重磅优惠!打1折!OpenAI开放最新的GPT-3.5和ChatGPT模型API商业服务!
最新发布!截止目前最强大的最高支持65k输入的开源可商用AI大模型:MPT-7B!
GPT4All:一个可以直接在本地运行各大商业友好的开源大模型解决方案
在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)
大模型驱动的自动代理(AI Agent):将语言模型的能力变成通用能力的一种方式——来自OpenAI安全团队负责人的解释与观点