统计、机器学习与编程知识的原创博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

6张示意图解释6种语言模型(Language Transformer)使用方式

近几年语言模型的发展速度很快,各种大语言预训练模型的推出让算法在各种NLP的任务中都取得了前所未有的成绩。其中2017年谷歌发布的Attention is All You Need论文将transformer架构推向了世界,这也是现在最流行的语言模型结构。威斯康星大学麦迪逊分校的统计学教授Sebastian Raschka总结了6中Language Transformer的使用方法。值得一看。

阅读 1591

构建人工智能应用的开发者指南

微软在去年4月份的时候推出了一个构建虚拟助手的指南:《构建人工智能应用的开发者指南·第二版》。这份报告帮助我们借助微软的工具构建一个虚拟助手,本文将简要描述一下这份报告,文末有相关资源下载。

阅读 1589

计算机视觉的五个趋势

这是一篇来自Sayak Paul的预测,这个哥们长期混迹于各个开源社区,积极参与各大公司的开发者大会。目前在一家初创企业工作,简历非常丰富,非常积极在社区推广自己。但是不管怎么说,他在计算机视觉领域也是一直在一线工作。他对未来计算机视觉的发展方向有五个预测,虽然不一定准确,但是我们可以借助这个进行思考。

阅读 1571

最全面的Kaggle解决方案和创意清单

这是一位热心网友(faridrashidi)收集的Kaggle竞赛的解决方案。这是在过去的Kaggle竞赛中表现最好的选手所分享的几乎所有可用的解决方案和想法的列表。一旦有新的比赛结束,这个列表就会更新。

阅读 1562

Stable Diffusion的Tensorflow/Keras实现及使用

最近一段时间Text-to-Image模型十分火热。OpenAI的DALL·E2模型的效果十分惊艳。不过,由于Open AI现在的不Open策略,大家还无法使用这个模型,业界只开放了一个小版本的DALL·E mini。不过,前段时间,Stability AI发布的Stable Diffusion其效果明显好于现有模型,且免费开放使用,让大家都开心了一把。不过原有模型是Torch实现的,而现在,基于Tensorflow/Keras实现的Stable Diffusion已经开源。

阅读 1547

数据科学和机器学习面试题及其答案

这是来自Kaggle上网友的分享,是关于数据科学和机器学习的面试题集锦。都是英文的题目,不过应该不影响,大家也可以根据题目自己去寻找答案,我看了一下,并不是所有的答案都非常准确,但问题的确可以帮助我们思考总结。

阅读 1540

速度,2个月免费的GPT-4和Claude-2.1,PerplexityAI发布圣诞优惠~

PerplexityAI是通过搜索引擎检索互联网的内容,然后使用大模型总结答案。产品形态有点像Bing的Bing Chat。圣诞节前夕,PerplexityAI提供了一个优惠代码,可以免费使用他们的2个月的Pro版本订阅服务。PerplexityAI的Pro版本提供GPT-4、Claude-2.1等大模型服务,支持生成图片和基于很长的PDF问答,这2个月的服务十分划算!

阅读 1528

微软发布大语言模型与传统编程语言的集成编程框架——Python版本的Semantic Kernel今日发布

目前的LLM有很多限制,有很多问题并不能很好的解决,例如文本输入长度有限、无法记住很早之前的信息等。而这些问题目前也都缺少合适的解决方案。它们所依赖的技术:如任务规划、提示模板、向量化内存等需要的是编程的智慧。Semantic Kernel就是微软在这个背景下推出的一个结合LLM与传统编程技术的编程框架。

阅读 1522

【计算机硬件知识简介】之CPU指令集

随着华为被美国多轮制裁,大家忽然发现原来国内在半导体硬件方面的差距居然如此之大。半导体硬件相关方面的关注度前所未有,为了更好地理解计算机运行的原理,本文翻译自耶鲁大学的PCLT网站,旨在介绍关于计算机运行的一些原理知识。

阅读 1494

为什么最新的大语言模型(如ChatGPT)都使用强化学习来做微调(finetuning)?

最近,随着ChatGPT的火爆,大语言模型(Large language model)再次被大家所关注。当年BERT横空出世的时候,基于BERT做微调风靡全球。但是,最新的大语言模型如ChatGPT都使用强化学习来做微调,而不是用之前大家所知道的有监督的学习。这是为什么呢?著名AI研究员Sebastian Raschka解释了这样一个很重要的转变。大约有5个原因促使了这一转变。

阅读 1492

73亿参数顶级开源模型Mistral-7B升级到v0.2版本,性能与上下文长度均有增强。

Mistral-7B是由MistralAI开源的一个73亿参数规模的大语言模型,最早在2023年9月底开源。因为其良好的性能和友好的开源协议被很多人使用。今天,这个模型升级到来v0.2版本Mistral-7B-v0.2。基于Mistral-7B-v0.2进行指令微调的模型 Mistral-7B-Instruct-v0.2在2023年11月11日公布,而这个基座模型则是在2023年3月24日开源。

阅读 1489

可能比runway更好!StabilityAI最新开源文本生成视频大模型:Stable Video Diffusion,可以生成最多20帧的视频,但不可商用

在深度学习和计算机视觉的发展历程中,视频生成技术一直是一个极具挑战和创新的领域。而发布了一系列开源领域最强图像生成模型Stable Diffusion系列模型背后的企业StabilityAI最近又开源了一个的文本生成视频大模型Stable Video Diffusion模型,这个模型可以生成最多20帧的视频。测试效果,这个模型普通版本与runway差不多,20帧版本则超过了runway!

阅读 1485

Google发布迄今为止公开可用的最大的多语言网络数据集MADLAD-400,覆盖419种语言

Google DeepMind与Google Research的研究人员推出了一个全新的多语言数据集——MADLAD-400!这个数据集汇集了来自全球互联网的419种语言的大量文本数据,其规模和语言覆盖范围在公开可用的多语言数据集中应该是最大的。研究人员从Common Crawl这个庞大的网页爬虫项目中提取了大量数据,并进行了人工审核,删除了许多噪音,使数据集的质量得到了显著提升。

阅读 1480

如何解决大模型微调过程中的知识遗忘?香港大学提出有监督微调新范式并开源新模型LLaMA Pro

大语言模型一个非常重要的应用方式就是微调(fine-tuning)。微调通常需要改变模型的预训练结果,即对预训练结果的参数继续更新,让模型可以在特定领域的数据集或者任务上有更好的效果。但是微调一个严重的副作用是可能会让大模型遗忘此前预训练获得的知识。为此,香港大学研究人员推出了一种新的微调方法,可以保证模型原有能力的基础上提升特定领域任务的水平,并据此开源了一个新的模型LLaMA Pro。

阅读 1474