标签为 #R# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

Scikit-Learn最新更新简介

Scikit-Learn有很优秀的机器学习处理思想,包括TensorFlow等新框架都借鉴了它的设计思想。最近的更新也让Scikit-Learn更加强大。在描述这个更新之前我们先简单看一下历史,然后让我们一起看看都有什么新内容吧。

阅读 3732

深度学习技巧之Batch Normalization

Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。

阅读 4986

Keras框架下输出模型中间层学习到的表示的两种常用方式

深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。

阅读 3159

深度学习之GRU神经网络

之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:

阅读 10977

深度学习之LSTM模型

在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。

阅读 9635

深度学习之Attention机制

Encoder-Decoder的深度学习架构是目前非常流行的神经网络架构,在许多的任务上都取得了很好的成绩。在之前的博客中,我们也详细介绍了该架构(参见深度学习之Encoder-Decoder架构)。本篇博客将详细讲述Attention机制。

阅读 6223

深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

阅读 13256

深度学习之RNN模型

序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。

阅读 15548