让大语言模型为文本处理提提速:Scikit-learn与LLM的合体Scikit-LLM开源项目发布
虽然LLM在很多任务上很好用,但是实际应用中我们常见的文本分类、文本标注等工作目前却依然缺少一个可以利用LLM能力的好方法。LLM的强大并没有在工程落地上比肩传统的机器学习处理框架。上周,一个叫Scikit-LLM新的开源项目发布,将传统优秀的Scikit-learn框架与LLM结合,带来了LLM落地的新方法。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
虽然LLM在很多任务上很好用,但是实际应用中我们常见的文本分类、文本标注等工作目前却依然缺少一个可以利用LLM能力的好方法。LLM的强大并没有在工程落地上比肩传统的机器学习处理框架。上周,一个叫Scikit-LLM新的开源项目发布,将传统优秀的Scikit-learn框架与LLM结合,带来了LLM落地的新方法。
最近,一个代号 “Nano Banana” 的神秘图像生成与编辑大模型突然在社交网络上掀起风暴。与之前所有模型截然不同,它似乎拥有「记忆面孔」的魔法:无论角度、光影如何变化,人物的面容始终一致;它还能读懂照片里的故事,精准捕捉场景氛围,并服从多步骤、高复杂度的指令。然而,它像幽灵一样没有身世——没有官方文档,没有作者署名,甚至没有一行技术白皮书。极致的神秘感与惊人的效果形成巨大反差,像磁铁般吸住了整个社区的目光:它究竟出自谁手?能力边界到底在哪儿? 本文会介绍一下这个模型当前已知的信息,以及如何使用。
Kimi K2是由Moonshot AI最新推出的旗舰级大模型,首次将开放Agentic Intelligence(自主代理智能)与强大工具调用能力有机整合。它不仅在知识推理、数学、代码等传统“非思维模型”任务上展现出全球领先的能力,还特别针对一系列实际Agentic(自动决策与操作型)任务进行了深度优化。在业内,这代表AI模型正从“只会答题”向“能自主完成复杂任务”转变。K2模型完全开源,可免费商用授权。
阿里巴巴Qwen团队发布了全新的Qwen3 Embedding系列模型,这是一套基于Qwen3基础模型构建的专用文本向量与重排(Reranking)模型。该系列模型凭借Qwen3强大的多语言理解能力,在多项文本向量与重排任务的Benchmark上达到了SOTA水平,其中8B尺寸的向量模型在MTEB多语言排行榜上排名第一。Qwen3 Reranker模型在多个评测基准上同样大幅超越了现有的主流开源竞品。
在最新的ChatGPT的前端代码中,有网友发现了一个OpenAI隐藏的或者正在测试的功能,即在ChatGPT的对话中可以@ 任意GPTs商店中公开的GPTs,然后由这个GPTs为用户当前的对话进行回复,这个功能不需要用户离开当前对话页面。这意味着在一次对话中,我们可以与几百万个不同的GPTs同时协作聊天,就像一个巨大的聊天群,里面有无数个各种各样的GPT一起为你解决问题。
在过去的几年里,我们看到了AI在图像、视频和文本生成方面的巨大进步。然而,音频生成领域的进展却相对滞后。MetaAI这次再为开源贡献重磅产品:AudioCraft,一个支持多个音频生成模型的音频生成开发框架。
今天微软宣布,新版本的Bing将全线接入ChatGPT,试图领先谷歌一步。这篇博客将总结一下带了ChatGPT的新版本Bing将有哪些新功能!
我们将介绍如何将ML和SE结合起来,开发一种新的基于Transformer的混合语义ML代码补全,现在可供内部谷歌开发人员使用。我们讨论了如何通过(1)使用ML对SE单标记建议重新排序,(2)使用ML应用单行和多行补全并使用SE检查正确性,或(3)使用单标记语义建议的ML的单行和多行延拓来组合ML和SE。
Grok系列是马斯克旗下的人工智能企业xAI发布的大语言模型,在推特上给大家使用。第一个版本,Grok-1前端时间 开源,效果一般。就在刚才,xAI宣布他们开始内测Grok-1.5,即将全面商用!
随着DeepSeek R1和OpenAI的o1、o3等推理大模型的发布,我们当前可使用的大模型种类也变多了。但是,推理大模型和普通大模型之间并不是二选一的关系,在不同的问题上二者各有优势。为了让大家更清晰理解推理大模型和普通大模型的应用场景。OpenAI官方推出了一个推理大模型最佳实践指南。描述了二者的对比。本文将总结这份推理大模型最佳实践指南。
本周,谷歌的研究人员在arXiv上提交了一个非常有意思的论文,其主要目的就是分享了他们建立能够翻译一千多种语言的机器翻译系统的经验和努力。
今天,OpenAI在其官网上发布了一个全新的研究成果:一个利用较弱的模型来引导对齐更强模型的能力的技术,称为由弱到强的泛化。OpenAI认为,未来十年来将诞生超过人类的超级AI系统。但是,这会出现一个问题,即基于人类反馈的强化学习技术将终结。因为彼时,人类的水平不如AI系统,所以可能无法再对模型输出的内容评估好坏。为此,OpenAI提出这种超级对齐技术,希望可以用较弱的模型来对齐较强的模型。这样可以在出现比人类更强的AI系统之后可以继续让AI模型可以遵循人类的意志、偏好和价值观。
在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。
Qwen3 是阿里于 2025 年 6 月开源的新一代大模型系列,共发布了 8 个不同参数规模的模型,覆盖从 6 亿到 2350 亿参数的范围,融合了稠密模型和 MoE 架构。值得注意的是,此次未包含此前广受关注的 Qwen-72B 稠密模型版本,阿里表示从 Qwen3 起,超过 30B 参数的模型将统一采用 MoE 架构以优化性能和效率。
最近,一些未公开但即将发布的内容被曝出,显示出Anthropic正在为其AI模型(Claude)推出一项名为Thinking的新功能。这一功能将极大提升AI在推理和决策时的透明度,允许用户查看AI的思考过程,并提供更长时间的推理分析,帮助用户更好地理解和验证AI的决策逻辑。
AIPRM的工作人员最近发现ChatGPT的客户端隐藏内置了一个新的debug特性,可以提高ChatGPT对话的问题调试功能。这个特性包含非常多的功能。同时,最新的截图显示ChatGPT Team版本计划可能延迟但没有取消。
最近开始学习新的前端技术。以前开发网站直接使用jQuery+Bootstrap组合,感觉非常容易和方便。但是,现在前端貌似都开始转向基于构建的方式去开发。由于初学者进入一个项目看很多内容也不如上手启动一个项目感受好,本文抛弃原理,直接教大家上手创建一个vue项目。
最初,大模型的应用主要通过像ChatGPT这样的聊天机器人展现其智能理解能力。随着技术的进步,基于大模型的智能代理(AI Agent)成为突破大模型能力边界的重要方向。这些智能代理能够执行一系列任务、解决问题,并进行决策,具备深刻理解用户需求和自主规划解决方案的能力,并能够根据规划结果,选择和使用各种工具来完成任务。然而,AI Agent系统面临的关键挑战是如何高效地将外部工具、知识、资源等迅速接入大模型,并实现有效利用。尤其是,如何将现有的工具和资源整合进大模型,提升其生产力能力,是一个亟待解决的问题。
OpenAI发布了ChatGPT的企业版,这是一个专为企业设计的聊天机器人。这个版本不仅提供了企业级的安全和隐私保护,还具有更高的处理速度和更多的自定义选项。相比较个人版的ChatGPT,企业版主要是提升了性能、强调了安全等。
今天,OpenAI官方宣布了一个非常有意思的论文,他们使用GPT-4模型来自动解释GPT-2中每个神经元的含义,试图让语言模型来对语言模型本身的原理进行解释。
在最近的24个小时内,有2个开源的自然语言处理领域的开源预训练大模型发布。这两个模型都是类似GPT的Transformer模型,可以完成和ChatGPT类似的能力。最重要的是这2个模型完全开源!
就在今天,X平台上的一位博主发现可以通过指令让Manus返回它的系统情况,发现ManusAI是Claude Sonnet 3.7+29个工具组成的一个大模型应用系统,也让很多人认为这就是ManusAI的全部,那么这是真的吗?本文结合ManusAI的成员提供的信息为大家介绍。
Phi系列大语言模型是微软开源一个小规模参数的语言模型。第一代和第二代的Phi模型参数规模都不超过30亿,但是在多个评测结果上都取得了非常亮眼的成绩。今天,微软发布了第三代Phi系列大模型,最高参数规模也到了140亿,其中最小的模型参数38亿,评测结果接近GPT-3.5的水平。