
生成式AI重塑新闻分发格局:搜索衰退与流量转移下的出版商和传统网站压力山大!SimilarWeb最新报告解释大模型产品对搜索引擎和内容网站的影响!
今天,SimilarWeb发布了一个全新的报告,描述了自从ChatGPT这种大模型产品发布之后,新闻出版网站的流量下滑严重,并提供了相关的分析。尽管这是针对新闻网站的报告,但是实际上所有的内容网站或者是内容生产者可能都是有影响的。我们基于这份报告进行解读,为大家提供一个参考。
加载中...
探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

今天,SimilarWeb发布了一个全新的报告,描述了自从ChatGPT这种大模型产品发布之后,新闻出版网站的流量下滑严重,并提供了相关的分析。尽管这是针对新闻网站的报告,但是实际上所有的内容网站或者是内容生产者可能都是有影响的。我们基于这份报告进行解读,为大家提供一个参考。

编程领域大模型一直是进展非常快的大模型领域。因为编程能力更强的模型,通常在逻辑思维、工具调用上有更好的表现,在很多领域,特别是Agent领域有很大的应用价值。今天法国人工智能明星公司MistralAI发布了2个全新的编程大模型,分别是Devstral Medium和 Devstral Small 1.1,后者是一个开源的240亿参数的编程大模型。

Cohere For AI 推出了 Aya Vision 系列,这是一组包含 80 亿(8B)和 320 亿(32B)参数的视觉语言模型(VLMs)。这些模型针对多模态AI系统中的多语言性能挑战,支持23种语言。Aya Vision 基于 Aya Expanse 语言模型,并通过引入视觉语言理解扩展了其能力。该系列模型旨在提升同时需要文本和图像理解的任务性能。

在几个小时前,OpenAI开源了两款名为gpt-oss-120b和gpt-oss-20b的大语言模型。这是自GPT-2以来,OpenAI首次推出开源权重大语言模型,这两个模型的评测效果达到了o4-mini和o3-mini的水平,而且以Apache 2.0协议开源,大家可以自由使用,包括任何形式的商用。

就在几个小时前,OpenAI 发布了全新的 GPT Realtime 大模型。这是一个 Speech-to-Speech(S2S)模型,能通过单个模型与 API完成从音频输入到音频输出的全流程,显著降低交互延迟并充分保留语音细节。 GPT Realtime 以“端到端语音理解—推理—合成”为核心路径,解决了传统“识别—推理—合成”多阶段带来的延迟与风格割裂问题。

随着大型语言模型(LLM)能力的飞速发展,如何科学、准确地评估其性能,特别是深度的逻辑推理和代码生成能力,已成为人工智能领域的一大挑战。传统的评测基准在面对日益强大的模型时,逐渐暴露出数据污染、难度不足、无法有效评估真实推理能力等问题。在这一背景下,一个旨在检验模型竞赛级编程水平的评测基准——Codeforces应运而生,为我们提供了一个更严苛、更接近人类程序员真实水平的竞技场。

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

Aider 是一个在终端里进行结对编程的开源工具。为评估不同大模型在“按照指令对代码进行实际可落地的编辑”上的能力,Aider 提出并维护了公开基准与排行榜,用于比较模型在无人工干预下完成代码修改任务的可靠性与成功率。该评测已被多家模型提供方在技术说明中引用,用作代码编辑与指令遵循能力的对照指标。

DALL·E3是OpenAI推出的文本生成图片服务,背后也是一个文生图大模型。此前,该模型只能通过对话的方式让模型生成图片结果。无法通过配置信息控制模型输出的效果,包括风格、比例等。而最新的截图显示,OpenAI可能即将推出DALL·E Controls功能,可以从不同的方面来控制图片生成的效果。

GPT-5 在指令遵循和推理能力上比前代更强,但也因此更“敏感”:如果规则里有冲突或表述过度强硬,模型往往会卡壳或输出异常。为此,OpenAI 发布了面向开发者的 《GPT-5 for Coding》技巧小抄,其中总结了使用 GPT-5 进行编程与代码生成时最实用的六条经验。这些技巧与普通的“写作提示工程”不同,它们专门针对软件开发场景:如何写规则、怎样控制推理强度、如何避免模型“想太多”,以及怎样利用 GPT-5 的新特性把它真正驯化成可靠的结对编程伙伴。本文对这六条技巧逐条进行解释总结。

就在今日,OpenAI正式推出了 Sora 2 ——其旗舰级视频与音频生成模型。相比2024年2月发布的初代 Sora,本次升级带来了断层级的真实感与显著增强的可控性。它不仅能更好地遵循物理规律生成视频,还首次实现了同步对话与环境音效的生成,并通过全新 iOS 应用“Sora”开放给公众使用。

为了解决大模型的Agent操作依赖交互和人工处理这个问题,普林斯顿大学与 Sierra Research 的研究团队在 2025 年 6 月提出了 τ²-Bench(Tau-Squared Benchmark),并发布了论文《τ²-Bench: Evaluating Conversational Agents in a Dual-Control Environment》。 它是对早期 τ-Bench 的扩展版本,旨在建立一种标准化方法,评估智能体在与用户共同作用于环境时的表现。

就在刚才,Anthropic 正式推出了 Claude Sonnet 4.5——全球最强的编码模型。这款新模型不仅在软件开发能力上实现了断层领先,更在构建复杂 AI 代理、计算机操控以及数学推理等多个维度展现出革命性突破。

Mistral AI今天发布了其首个专注于推理能力的系列模型——**Magistral**。这次发布包含两个核心模型:旗舰模型`Magistral Medium`和<font color=red>已开源的</font>`Magistral Small (24B)`。最引人注目的亮点是,Mistral展示了其自研的强化学习(RL)pipeline能够从头开始,仅通过RL训练就将基础模型的推理能力提升到业界顶尖水平,而无需依赖任何其他预先存在的推理模型进行数据蒸馏。这套技术栈非常强大!

尽管人工智能语言模型的能力日益强大,但它们依然面临一个棘手的问题:“幻觉”(Hallucination)。所谓幻觉,指的是模型自信地生成一个事实上错误的答案。OpenAI 的最新研究论文指出,这一现象的根源在于标准的训练和评估方式实际上在鼓励模型“猜测”而非“承认不确定性”。

就在今日,阿里巴巴Qwen团队重磅推出Qwen3-VL-2B和Qwen3-VL-32B两款视觉语言模型,这些dense架构的创新之作,将多模态AI的强大能力压缩进更紧凑的框架中,显著降低了部署门槛。 作为Qwen3系列的最新扩展,它们在保持顶级性能的同时,支持从边缘设备到云端的无缝应用——想象一下,一款手机App就能实时分析2小时视频,或从模糊手写笔记中提取精确信息。这不仅仅是参数缩减,更是AI普惠化的关键一步,帮助开发者以更低的成本实现视觉智能的突破。

几个小时前,阿里一次更新了3个大模型,分别是开源的全模态大模型Qwen3-Omni、开源的图像编辑大模型Qwen3-Image-Edit和不开源的语音识别大模型Qwen3-TTS。本次发布的3个模型均为多模态大模型,可以说阿里的大模型真的是全面开花,节奏很快!

就在今日,Moonshot AI 正式推出 Kimi K2 Thinking,这款开源思考代理模型以其革命性的工具集成和长程推理能力,瞬间点燃了开发者社区的热情。Kimi K2能自主执行200-300次连续工具调用,跨越数百步推理,解决PhD级数学难题或实时网络谜题。本次发布的Kimi K2不仅仅是模型升级,更是AI Agent能力的扩展。

短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。

自从OpenAI转向盈利化运营之后,很少再开源自己的技术。但就在刚才,OpenAI开源了一个全新的大模型调测工具:Transformer Debugger。这个工具可以帮助开发者调测大模型的推理情况,帮助我们理解模型的输出并提供一定的解释支持。

随着大型语言模型(LLM)的飞速发展,如何准确、全面地评估它们的能力成为了一个日益重要的课题。在众多评测基准中,Simple Bench 以其独特的定位脱颖而出,它专注于检验模型在日常人类推理方面的能力,而在这些方面,当前最先进的模型往往还不如普通人。本文将详细介绍 Simple Bench 评测基准,探讨其出现的背景、设计理念、评测流程以及当前主流模型的表现。

OpenAI 正式发布了其最新模型 OpenAI o3-pro,这是其旗舰模型 o3 的专业增强版。o3-pro 专为需要“更长时间思考”的复杂任务而设计,其核心亮点在于极致的可靠性和准确性,尤其在数学、科学和编程等专业领域表现卓越。根据OpenAI引入的全新“4/4可靠性”评测标准,o3-pro 的性能远超前代,OpenAI官方强调o3-pro在处理高难度、高风险任务的能力上实现了质的飞跃。

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

人工智能(AI)的通用智能(AGI)发展一直是研究领域的焦点。近期,由 ARC Prize 基金会推出并由 AI 研究者 François Chollet 联合发起的 ARC-AGI-2 评测基准,为衡量大模型在未知情境下的实时推理能力和学习效率提供了新的视角。