DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:G/
  4. 第11页
标签

「G」相关文章(第11页)

汇总「G」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#G
Stable Diffusion的最新实现——KerasCV的官方实现!

Stable Diffusion的最新实现——KerasCV的官方实现!

Stable Diffusion是一种功能强大的开源文本到图像(Text-to-Image)生成模型。虽然目前有多个开源项目可以实现基于文本提示(prompt)创建图像,但Stable Diffusion性能极其强大,其结果甚至可以媲美DALL·E2。而现在KerasCV提供了这个模型的官方实现!

2022/09/29 23:31:031,617
#KerasCV#stablediffusion
缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit

缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit

少量标记的学习(Few-shot learning)是一种在较少标注数据集中进行模型训练的一种学习方法。为了解决大量标注数据难以获取的情况,利用预训练模型,在少量标记的数据中进行微调是一种新的帮助我们进行模型训练的方法。而就在昨天,Hugging Face发布了一个新的语句transformers(Sentence Transformers)框架,可以针对少量标记数据进行模型微调以获取很好的效果。

2022/09/27 23:17:151,909
#few-shotlearning#sentencetransformers
最新好课!从深度学习到stable diffusion的手把手入门教程

最新好课!从深度学习到stable diffusion的手把手入门教程

Stable Diffusion是最近很火的Text-to-Image预训练模型(详细信息:https://www.datalearner.com/ai-resources/pretrained-models/stable-diffusion )。而现在,相关的视频教程已经出现。fast.ai的团队宣布了一门新的深度学习课程《From Deep Learning Foundations to Stable Diffusion》上线!

2022/09/24 10:01:173,036
#text-to-image#深度学习课程
Stable Diffusion的Tensorflow/Keras实现及使用

Stable Diffusion的Tensorflow/Keras实现及使用

最近一段时间Text-to-Image模型十分火热。OpenAI的DALL·E2模型的效果十分惊艳。不过,由于Open AI现在的不Open策略,大家还无法使用这个模型,业界只开放了一个小版本的DALL·E mini。不过,前段时间,Stability AI发布的Stable Diffusion其效果明显好于现有模型,且免费开放使用,让大家都开心了一把。不过原有模型是Torch实现的,而现在,基于Tensorflow/Keras实现的Stable Diffusion已经开源。

2022/09/24 09:58:121,633
#keras#StableDiffusion
简单几步教你如何在搭建并使用DALL·E开源版本来基于文字生成图片

简单几步教你如何在搭建并使用DALL·E开源版本来基于文字生成图片

大规模的text-to-image模型没有公开预训练结果,OpenAI的意思就是我这玩意太厉害,随便放出来可能会被你们做坏事,而谷歌训练这个应该就是为了云服务挣钱,所以都没有公开可用的版本供大家玩耍。虽然业界有基于论文的实现,但是训练模型需要耗费大量的资源,没有开放的预训练结果,我们普通个人也很难玩起来。但是,大神Sahar提供了一个免费使用开源实现的text-to-image预训练模型的方式。

2022/06/12 18:44:5311,527
#Text-To-Image#图片生成
Hugging Face发布最新的深度学习模型评估库Evaluate!

Hugging Face发布最新的深度学习模型评估库Evaluate!

就在儿童节前一天,Hugging Face发布了一个最新的深度学习模型评估库Evaluate。对于机器学习模型而言,评估是最重要的一个方面。但是Hugging Face认为当前模型评估方面非常分散且没有很好的文档。导致评估十分困难。因此,Hugging Face发布了这样一个Python的库,用以简化大家评估的步骤与时间。

2022/06/01 11:14:402,369
#huggingface#模型评价
DeepGraph Library(DGL)发布了0.81版本

DeepGraph Library(DGL)发布了0.81版本

2022/04/19 16:03:31954
#GNN#图神经网络
Copilot Labs插件——基于AI的代码解释和代码翻译神器

Copilot Labs插件——基于AI的代码解释和代码翻译神器

昨天,Copilot团队推出了一个名为GitHub Copilot Labs的VS Code配套扩展。它独立于(并依赖于)GitHub Copilot扩展。它可以用来解释代码和翻译代码。

2022/04/01 09:39:037,082
#copilot#GitHub
GPT-3最新的能力开放——自动重构和增强你的代码!

GPT-3最新的能力开放——自动重构和增强你的代码!

OpenAI在3月15日发布了一个最新的GPT-3和Codex的版本,这个版本最大的能力就是可以在已有的文本上插入或者编辑新的内容。而不是续写已有的文本。这个能力最大的应用就是重写已有文本,或者用来重构代码。

2022/03/19 14:21:351,719
#GitHub#openai
使用kaggle房价预测的实例说明预测算法中OneHotEncoder、LabelEncoder与OrdinalEncoder的使用及其差异

使用kaggle房价预测的实例说明预测算法中OneHotEncoder、LabelEncoder与OrdinalEncoder的使用及其差异

对于分类特征的处理,sklearn中常见的方法有两种,一种是OneHotEncoder,另一种很多人说是LabelEncoder,其实不对。sklearn中,还有一个OrdinalEncoder,二者似乎一样,但其实并不相同,差别很大。本文将用Kaggle的房价预测的实例来描述如何这些差异以及不同处理对预测算法的影响。

2021/11/19 00:37:562,373
#kaggle#sklearn
最全面的Kaggle解决方案和创意清单

最全面的Kaggle解决方案和创意清单

这是一位热心网友(faridrashidi)收集的Kaggle竞赛的解决方案。这是在过去的Kaggle竞赛中表现最好的选手所分享的几乎所有可用的解决方案和想法的列表。一旦有新的比赛结束,这个列表就会更新。

2021/11/02 21:45:521,647
#kaggle
Python3.10版本的结构模式匹配(structural pattern matching)简介

Python3.10版本的结构模式匹配(structural pattern matching)简介

Python最新正式版本3.10在10月4日已经发布。这个版本从2020年5月开始开发,经历差不多一年半的时间终于正式发布。当然每一个新版本都有很多新功能。我们将持续关注新功能,在这篇文章中,我们将简述3.10中新功能中的语法——结构模式匹配(structural pattern matching)。

2021/10/14 22:45:201,922
#python#structuralpatternmatching
一张图看全深度学习中下层软硬件体系结构

一张图看全深度学习中下层软硬件体系结构

这几年深度学习的发展给人工智能相关应用的落地带来了很大的促进。随着NLP、CV相关领域的算法的发展,算法层面的创新已经逐渐慢了下来,但是工程方面的研究依然非常火热。从底层的硬件的创新,到平台框架的发展,为支撑超大规模模型训练与移动端小规模算法推断而创造的软硬件体系也在飞速革新。本文将总结深度学习平台框架软件及下层的硬件支撑系统。

2021/06/12 12:20:514,145
#GPU#人工智能
Git提交本地文件

Git提交本地文件

Git操作记录

2020/03/20 09:33:302,036
#git#svn
基于GPU的机器学习Python库——RAPIDS简介及其使用方法

基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

2019/07/06 10:58:4014,914
#GPU#机器学习
CNN经典算法之Inception V1(GoogLeNet)

CNN经典算法之Inception V1(GoogLeNet)

GoogLeNet是谷歌在2014年提出的一种CNN深度学习方法,它赢得了2014年ILSVRC的冠军,其错误率要低于当时的VGGNet。与之前的深度学习网络思路不同,之前的CNN网络的主要目标还是加深网络的深度,而GoogLeNet则提出了一种新的结构,称之为inception。GoogLeNet利用inception结构组成了一个22层的巨大的网络,但是其参数却比之前的如AlexNet网络低很多。是一种非常优秀的CNN结构。

2019/05/31 20:22:255,030
#GoogLeNet#Inception
tf.nn.softmax_cross_entropy_with_logits函数

tf.nn.softmax_cross_entropy_with_logits函数

tf.nn.softmax_cross_entropy_with_logits函数

2019/03/27 21:17:484,487
#tensorflow#tf.nn.softmax_cross_entropy_with_logits函数
深度学习之GRU神经网络

深度学习之GRU神经网络

之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:

2019/03/23 15:34:2811,076
#GRU#RNN
Ubuntu 命令行 指定GPU 运行 Python 程序

Ubuntu 命令行 指定GPU 运行 Python 程序

2018/12/19 10:59:446,688
#GPU#linux
background综合属性

background综合属性

2018/10/15 21:04:042,372
#background
margin

margin

2018/10/11 22:17:042,753
#margin
关于padding

关于padding

2018/10/08 21:16:212,010
#关于padding
stata 用outreg2输出回归结果

stata 用outreg2输出回归结果

stata 输出回归结果

2018/05/18 16:49:3837,956
#stata;outreg2
origin绘图操作案例(1)

origin绘图操作案例(1)

日常绘图时,会使用都origin,其是一款非常强大的制图工具

2017/11/17 10:47:569,131
#origin#论文制图
上一页
1...101112...39
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!
  • Anubis——纽约大学计算机学生建立的学习管理系统和CloudIDE简介
  • 华为开源2个Pangu大模型:分别是MoE架构,720亿总参数,160亿激活参数的Pangu Pro MoE以及Pangu Embedded,评测结果略超同级别的Qwen3
  • 大模型能不能写 PPT?AI 办公如何真正落地?以办公小浣熊为例,看一种更自然的大模型办公方式正在出现
  • 重回第一!OpenAI升级GPT-4-Turbo到2024-04-09版本(gpt-4-turbo-2024-04-09),GPT-4推理和数学能力大幅提高,基准测试最高有接近20%的提升!
  • 2023年4月业界发布的重要20多个AI模型总结:OpenAssistant、Segment Anything Model、StableLM、AudioGPT等
  • 常用的SQL语句总结
  • OpenAI发布GPT-5:这是一个包含实时路由的AI系统,而不仅仅是一个模型