DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
原创博客

原创AI技术博客

探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

排序方式
按日期排序按浏览量排序
GPT-5.1 有哪些提升?来自 OpenAI 官方 AMA 的能力、推理模式、安全策略全解读

GPT-5.1 有哪些提升?来自 OpenAI 官方 AMA 的能力、推理模式、安全策略全解读

2025 年 11 月 13 日,OpenAI 团队在 Reddit 上进行了一场针对 GPT-5.1、模型自定义能力、开发者 API、未来路线图 的公开 AMA(Ask Me Anything)。这次交流并不是简单的功能答疑,而是罕见地从内部视角解释了他们如何思考安全策略、模型行为塑形、推理模式优化、人格定制逻辑、多模态进展以及实际工程实现细节。

2025/11/14 22:30:39230
#AMA#GPT-5.1
GenAI 流量格局更新:ChatGPT 持续下滑、Claude 首超 Perplexity、Grok 与 DeepSeek 重新走强,Gemini 成为增长速度最快的模型

GenAI 流量格局更新:ChatGPT 持续下滑、Claude 首超 Perplexity、Grok 与 DeepSeek 重新走强,Gemini 成为增长速度最快的模型

11 月 13 日,SimilarWeb 发布了最新的 GenAI 访问流量分布。从数据走势可以明显看到,大模型行业正在经历从“ChatGPT 绝对统治”向“多极竞争”的结构性转变。 一年前,ChatGPT 占据了超过 86% 的流量份额,整个行业几乎处于单中心状态。然而在过去的 12 个月里,大模型的多样化发展、不同厂商的产品升级、企业用户需求变化,都推动了新一轮的流量重分配。

2025/11/15 13:25:11215
#AI分析#大模型市场竞争
在 API 和 ChatGPT 之间迷路?GPT-5.1、GPT-5.1-Chat、GPT-5.1 Instant 的真正区别解释(DataLearnerAI)

在 API 和 ChatGPT 之间迷路?GPT-5.1、GPT-5.1-Chat、GPT-5.1 Instant 的真正区别解释(DataLearnerAI)

2025/11/15 15:20:47179
#<span class='blog_tag'><a href='blog_list#tag
大模型新王者!谷歌发布Gemini 3.0 Pro,各方面评测几乎都是第一,全球首个大模型匿名投票得分超1500分的模型,支持100万输入上下文!

大模型新王者!谷歌发布Gemini 3.0 Pro,各方面评测几乎都是第一,全球首个大模型匿名投票得分超1500分的模型,支持100万输入上下文!

谷歌终于在2025年11月18日发布了新一代Gemini 3模型:Gemini 3.0 Pro。该模型目前在各个评测排行榜中都获得了非常优秀的结果,几乎是领先了所有的模型。而根据此前大家的匿名投票评分和早期测试,该模型的文本生成、编程、SVG生成等方面都非常优秀。谷歌官方强调,Gemini 3.0 Pro不仅在推理能力上达到了新的业界巅峰,更在理解深度、细微差别以及“思考”能力上实现了质的飞跃。

2025/11/19 09:24:47710
#Gemini#Gemini3Pro
重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

就在刚才,谷歌推出了 Nano Banana Pro(Gemini 3 Pro Image)。这是基于 Gemini 3 Pro 打造的专业级图像生成与编辑模型,相比几个月前的 Nano Banana,这次升级几乎重构了谷歌图像生成能力的上限。从文本渲染、多图一致性,到世界知识、摄影级控制和信息可视化,Nano Banana Pro 在多个维度显著拉开了与上一代、乃至整个行业同类产品的差距。

2025/11/21 00:52:53604
#Google#NanoBanana
如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

Google 最新推出的 Nano Banana Pro(Gemini 3 Pro Image) 不只是一次“图像质量提升”,而是让普通用户也能借助专业级提示词,生成具备排版、构图、品牌、摄影语言的作品。 在这个版本中,最关键的能力不是模型本身,而是: 它对结构化、专业化 Prompt 的响应能力非常强。 写对提示词,效果天差地别。 本文将完全聚焦于: 怎么写提示词,才能让 Nano Banana Pro 生出最好的图。

2025/11/21 01:21:06485
#Google#NanoBanana
Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

本文介绍 Terminal-Bench 的设计理念,深入讲解 core、Terminal-Bench Hard 与最新 Terminal-Bench 2.0 的区别,帮助开发者选择合适的 AI 终端评测基准。

2025/11/24 14:11:54546
#大模型Agent能力评测#大模型评测
Anthropic 最新 Agent 工程方案:使用双 Agent 架构让 AI 实现真正的长时自主工作

Anthropic 最新 Agent 工程方案:使用双 Agent 架构让 AI 实现真正的长时自主工作

就在昨天,Anthropic 发布了一套非常重要的工程方案,专门针对这些挑战而设计:基于“Initializer Agent + Coding Agent”的双 Agent 架构。

2025/11/27 20:34:30892
#AIAgent#大模型应用
AipexBase:让 AI 生成的应用真正能跑起来的国产开源AI后端底座

AipexBase:让 AI 生成的应用真正能跑起来的国产开源AI后端底座

最近 Vibe Coding 的概念越来越热,尤其是 Gemini 3 Pro 发布后,很多人都在说:“现在做网站和 App,好像一句话就能生成。” 界面生成、交互补全、流程搭建这些事情确实越来越轻松,模型能在很短时间内产出一个“看起来完整”的应用原型。一个国产开源项目就在尝试解决这个问题,它就是 AipexBase。

2025/11/27 21:04:40244
#大模型应用
大模型能不能写 PPT?AI 办公如何真正落地?以办公小浣熊为例,看一种更自然的大模型办公方式正在出现

大模型能不能写 PPT?AI 办公如何真正落地?以办公小浣熊为例,看一种更自然的大模型办公方式正在出现

AI 能不能替我做报告”几乎成了办公室里出现频率最高的疑问之一。模型能力的提升有目共睹,API 的边界也在持续扩张,但回到日常,那些真正让人感到疲惫的依旧是最具体的任务:一份复盘写到深夜,一个 PPT 改了十几版,一张 Excel 来回分析到眼花。它们看似普通,却占据了知识工作中惊人比例的时间。本文主要看一下办公小浣熊这个颇具代表性的大模型应用落地思路。

2025/11/28 10:55:12170
#大模型办公#大模型应用
复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型

复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型

几个小时前,DeepSeek 突然发布了两款全新的推理模型:DeepSeek V3.2 正式版与DeepSeek V3.2-Speciale。前者已经全面替换官方网页、App 与 API 成为新的默认模型;后者则以“临时研究 API”的方式开放,被定位为极限推理版本。

2025/12/01 23:38:17327
#DeepSeekV3.2#DeepSeekV3.2-Speciale
Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon(简称 Toolathlon)是一个针对语言代理的基准测试框架,用于评估大模型在真实环境中使用工具执行复杂任务的能力。该基准涵盖32个软件应用和604个工具,包括日常工具如 Google Calendar 和 Notion,以及专业工具如 WooCommerce、Kubernetes 和 BigQuery。它包含108个任务,每个任务平均需要约20次工具交互。该框架于2025年10月发布,旨在填补现有评测在工具多样性和长序列执行方面的空白。通过执行式评估,该基准提供可靠的性能指

2025/12/02 14:40:28269
#大模型工具使用#大模型评测
Ilya Sutskever访谈深度解读:关于大模型的瓶颈、人类智能的优势、模型泛化不足以及5-20年后超级智能会出现的真正问题

Ilya Sutskever访谈深度解读:关于大模型的瓶颈、人类智能的优势、模型泛化不足以及5-20年后超级智能会出现的真正问题

这篇文章基于 Dwarkesh Patel 对 SSI 创始人、前 OpenAI 首席科学家 Ilya Sutskever 的长访谈,系统梳理了他对模型泛化、人类智能结构、持续学习、RL 与预训练局限、超级智能路径、对齐策略,以及 AI 未来经济与治理的整体判断。文章不仅整理了核心观点,也结合具体原文展开解读,呈现 Ilya 如何从“人类为何能泛化”这一根问题出发,重新思考下一代智能系统应当如何构建。

2025/12/03 08:19:14291
#大模型应用#大模型技术
大模型到底能否真正提升写代码效率?Anthropic 内部 20 万条数据首次公开大模型在真实代码工作流中的表现

大模型到底能否真正提升写代码效率?Anthropic 内部 20 万条数据首次公开大模型在真实代码工作流中的表现

大模型究竟能否真正提升工程师的编码效率?Anthropic 最近发布的一份重量级内部研究给出了少见的、基于真实工程环境的数据答案。研究覆盖 132 名工程师、53 场深度访谈,以及 20 万条 Claude Code 使用记录,展示了 AI 在软件工程中的实际作用:从生产力显著提升(人均合并 PR 数同比增长 67%)、任务空间扩张(27% 的 Claude 工作原本不会被执行),到工程师技能版图、协作方式与职业路径的深刻变化。与此同时,研究也揭示了技能萎缩、监督负担、工作流变化等新挑战。这是一份罕见的“

2025/12/04 22:37:32631
#大模型应用#大模型技术
智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试

智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试

就在刚才,智谱推出了两个语音识别模型:闭源的 GLM-ASR 和开源的 GLM-ASR-Nano-2512。与过去他们更多关注通用大模型或多模态模型不同,这次聚焦的是语音转文字(ASR)任务,尤其面向中文语境、方言与复杂环境。以下是对这两款模型已知公开资料的整理与分析。

2025/12/10 11:10:41641
#ASR#GLM-ASR
Minion:比Anthropic更早实现大模型Programmatic Tool Calling范式的国产开源项目

Minion:比Anthropic更早实现大模型Programmatic Tool Calling范式的国产开源项目

2025年11月24日,Anthropic正式发布了Programmatic Tool Calling (PTC)特性,允许Claude通过代码而非单次API调用来编排工具执行。这一创新被认为是Agent开发的重要突破,能够显著降低token消耗、减少延迟并提升准确性。 然而,作为minion框架的创建者,我想分享一个有趣的事实:minion从一开始就采用了这种架构理念。在PTC概念被正式提出之前,minion已经在生产环境中证明了这种方法的价值。

2025/12/10 21:44:46280
#Minion#PTC
GPT-5.2与Gemini 3.0 Pro、Opus 4.5实测对比:前端页面没有更强

GPT-5.2与Gemini 3.0 Pro、Opus 4.5实测对比:前端页面没有更强

OpenAI 刚刚把 GPT-5.2 推上来了。我们在 DataLearnerAI 上把它和 Claude Opus 4.5、Gemini 3.0 Pro(Preview) 放到同一个对比页里,拉齐公开评测与基础规格,做一个“站在真实选择角度”的快速判断。

2025/12/12 16:25:57773
#GPT-5.2
Minion Skills: Claude Skills的开源实现

Minion Skills: Claude Skills的开源实现

本文介绍了 Claude 最近推出的 Skills 系统,以及作者在 Minion 框架中实现的一个完全开源的版本。Skills 的核心思路是让 AI Agent 在需要时再加载对应的专业能力,而不是一开始就把所有工具和知识都塞进上下文,从而缓解上下文窗口有限、成本高、响应慢的问题。

2025/12/17 22:06:31647
#Agent技巧#ClaudeSkills
Gemini 3 Flash:Google 在 12 月 17 日发布的新一代默认模型

Gemini 3 Flash:Google 在 12 月 17 日发布的新一代默认模型

2025 年 12 月 17 日,Google 正式发布了 Gemini 3 Flash 模型。 这是 Gemini 3 系列中的一款高性能轻量模型,目前已经在 Gemini App 以及 Google 搜索的 AI Mode 中作为默认模型上线。

2025/12/18 15:04:03451
#Gemini3Flash#Google
基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

过去几年,大语言模型的训练路线相对稳定:更大的模型、更长的预训练、更精细的指令微调与人类反馈对齐。这套方法在很长一段时间内持续奏效,也塑造了人们对“模型能力如何提升”的基本认知。但在 2025 年前后,一种并不算新的训练思路突然被推到台前,并开始占据越来越多的计算资源与工程关注度,这就是**基于可验证奖励的强化学习(Reinforcement Learning from Verifiable Rewards,RLVR)**。

2025/12/21 15:14:29701
#RLHF#RLVR
来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。

2025/12/21 17:20:242,775
#LLM#RLHF
2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

昨天,Karpathy 发布了《2025 LLM Year in Review》,对过去一年大模型领域发生的结构性变化进行了深度复盘。在这篇总结中,他不再纠结于具体的模型参数,而是将目光投向了推理范式的演进、Agent 的真实形态以及一种被称为“Vibe Coding”的新型开发模式。

2025/12/21 21:10:17600
#RLHF#RLVR
Context Arena:长上下文大模型评测基准介绍

Context Arena:长上下文大模型评测基准介绍

Context Arena 是一个专注于评估大语言模型长上下文处理能力的基准平台。它基于 OpenAI 发布的 Multi-Round Coreference Resolution (MRCR) 数据集,提供交互式排行榜,用于比较不同模型在复杂长对话中的信息检索和理解性能。该基准强调模型在长上下文下的实际表现,避免单纯依赖训练数据记忆。

2025/12/27 10:42:00448
#ContextArena#大模型评测
在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

2025/12/28 20:44:13324
#AIAgent经验#AI产品
上一页
1...373839
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • 如何使用git从GitHub上下载项目、更新远端项目并提交本地的更改
  • Gamma函数(伽玛函数)的一阶导数、二阶导数公式推导及java程序
  • 网络爬虫之java基础篇QueryRunner(Ⅲ)
  • Microsoft Visual C++ 14.0 is required 的解决方案
  • 深度学习的标准符号表示
  • 使用Spring Security进行登录验证
  • Meta上线了一个基于Emu文本生成图像大模型的图像生成系统Imagine:图像细节丰富、色彩鲜明、想象力很棒,而且免费使用!
  • Google Gemini Pro多模态接口开放!DataLearnerAI第一时间测试Gemini Pro多模态能力,比想象惊喜!