用户 小木 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应

Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。

阅读 36

重磅!Kimi K2.5发布,依然免费开源!原生多模态MoE架构,全球最大规模参数的开源模型之一,官方评测结果比肩诸多闭源模型!可以驱动100个子Agent执行!

2026年1月27日,月之暗面(Moonshot AI)发布新一代模型Kimi K2.5。根据官方说明,这是Kimi K2的后续版本,目前已通过Kimi.com网页端和App向用户推送。该模型同步上线Kimi API开放平台及编程助手Kimi Code,模型权重与相关代码也在Hugging Face开源。

阅读 190

看特斯拉前AI总监、OpenAI前知名研究员Andrej Karpathy如何看AI大模型编程(Claude Code这样的工具):AI Agent正在重塑编码工作流,2026年的软件工程大变革

本文整理了 Andrej Karpathy 在 2025 年底关于 AI Agent 编程的核心观点。基于其使用 Claude Code 等大模型的真实工程经验,Karpathy 认为软件工程正从“手动编码”转向“由 AI Agent 执行、人类定义目标与约束”的新范式。文章同时分析了 AI Agent 在效率提升之外带来的工程风险、技能退化与内容质量问题,并指出 2026 年将是行业系统性消化 AI Agent 能力的关键一年。

阅读 155

Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相

最近这几天,如果你的 X (Twitter) 首页被 Clawdbot 刷屏了,不用惊讶,主要是太火了。但是这个软件的使用有一定门槛,而且争议比较大。X上有一位博主分享了他对这个东西的看法和使用经验,挺详细的,对于想了解Clawdbot是啥的,这个文章不错。大家看也可以从这个文章看到Clawdbot能做什么,和Cowork对比有啥优点和缺点

阅读 727

ClawdBot:最新火爆网络的AI的桌面助手简介

ClawdBot 是一款开源AI代理工具,旨在帮助用户在本地设备上处理各种任务,在科技社区中迅速获得关注。它于2025年底由开发者Peter Steinberger(@steipete)推出,基于Anthropic的Claude模型,名称结合了“Claw”(龙虾钳子)和“Claude”,并以龙虾作为吉祥物,象征其适应性和本地运行特性。该工具强调本地优先的设计,用户可以完全控制数据和过程,避免对云服务的依赖。

阅读 156

知名开源框架MetaGPT升级为Atoms:专注解决大模型时代的Vibe Coding产品如何落地,五分钟想好Idea,五分钟生成App,五分钟接入支付,五分钟部署产品

2026 年 1 月初,原名 MetaGPT 的 AI 开发框架完成了一次重大升级,将其核心产品 MGX 正式更名为 Atoms。这一消息由 DeepWisdom 团队在 X(原 Twitter)等平台发布,标志着该项目从单纯的“AI 编程助手”正式转向“AI 构建真实生意”的全新定位。

阅读 149

阿里通义千问团队首次开源语音合成大模型:Qwen3-TTS:总共5个模型,最小的仅0.6B参数规模,最大1.8B参数

就在刚刚,阿里开源了全新的语音合成大模型Qwen3-TTS系列!本次开源的语音合成模型共5个版本,最小的仅0.6B参数规模,最大的模型参数也就1.7B,基本上手机端都可以运行。此次发布不仅在性能上宣称超越了许多商业级闭源模型(如 OpenAI 的 GPT-4o-Audio 和 ElevenLabs),更重要的这应该是阿里通义千问团队首次开源语音合成系列大模型。

阅读 270

Cursor 疯狂实验:用 GPT-5.2 花了一个星期在 Cursor 中开发了一个300万行代码的浏览器以及Claude Opus与GPT-5.2、GPT-5.2-Codex模型在Vibe Coding方面有什么差异

就在大家还在争论 AI 编程上限的时候,Cursor 团队发布了一份非常值得大家关注的内部测试报告,展示了当我们将 Agent 的规模和运行时间推向极致时,会发生什么。这不仅仅是简单的代码生成,而是让 AI 像人类团队一样协作,构建百万行级别的项目。这项实验为我们揭示了 AI 在编码领域的潜力与局限,值得每位开发者关注。

阅读 331

Anthropic 发布 Cowork:从 Claude Code 的发展历史看 Cowork 的能力与定位,它可能成为普通人的下一代桌面 AI 助手吗?

Anthropic 于 2026 年 1 月 12 日发布了 Cowork,这是一款基于 Claude 模型的新型 AI Agent工具,作为 Claude 桌面应用的 macOS 版本研究预览版推出。目前仅限 Claude Max 订阅者使用,未来计划扩展到 Windows 和跨设备同步。Cowork 继承了 Claude Code 的核心代理能力,但更注重非开发者用户的日常生产力任务,例如访问用户指定的文件夹,读取、编辑或创建文件,帮助整理杂乱下载、从截图生成电子表格,或从笔记起草报告。

阅读 268

MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB(Massive Multimodal Embedding Benchmark)是一个用于评估多模态嵌入模型的基准测试框架。该基准最初聚焦于图像-文本嵌入,并在后续版本中扩展到文本、图像、视频和视觉文档输入。MMEB通过收集多样化数据集,提供一个统一的评估平台,用于测试模型在分类、检索和其他任务上的性能。

阅读 225

重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

就在刚刚,阿里巴巴正式免费开源了两款全新的多模态模型——Qwen3-VL-Embedding(多模态向量模型)和 Qwen3-VL-Reranker(多模态重排序模型),首次在开源体系中系统性补齐了多模态 RAG 在“向量化检索 + 精排重排”两个关键环节上的能力空白。这两个模型是基于强大的Qwen3-VL基础模型构建的专用多模态向量与重排(Reranking)模型。

阅读 746

大模型工具使用的三次进化:从 Function Calling 到程序化编排

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

阅读 367

为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

阅读 419

在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

阅读 316

Context Arena:长上下文大模型评测基准介绍

Context Arena 是一个专注于评估大语言模型长上下文处理能力的基准平台。它基于 OpenAI 发布的 Multi-Round Coreference Resolution (MRCR) 数据集,提供交互式排行榜,用于比较不同模型在复杂长对话中的信息检索和理解性能。该基准强调模型在长上下文下的实际表现,避免单纯依赖训练数据记忆。

阅读 437

2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

昨天,Karpathy 发布了《2025 LLM Year in Review》,对过去一年大模型领域发生的结构性变化进行了深度复盘。在这篇总结中,他不再纠结于具体的模型参数,而是将目光投向了推理范式的演进、Agent 的真实形态以及一种被称为“Vibe Coding”的新型开发模式。

阅读 592

来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。

阅读 2764

基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

过去几年,大语言模型的训练路线相对稳定:更大的模型、更长的预训练、更精细的指令微调与人类反馈对齐。这套方法在很长一段时间内持续奏效,也塑造了人们对“模型能力如何提升”的基本认知。但在 2025 年前后,一种并不算新的训练思路突然被推到台前,并开始占据越来越多的计算资源与工程关注度,这就是**基于可验证奖励的强化学习(Reinforcement Learning from Verifiable Rewards,RLVR)**。

阅读 683

Minion Skills: Claude Skills的开源实现

本文介绍了 Claude 最近推出的 Skills 系统,以及作者在 Minion 框架中实现的一个完全开源的版本。Skills 的核心思路是让 AI Agent 在需要时再加载对应的专业能力,而不是一开始就把所有工具和知识都塞进上下文,从而缓解上下文窗口有限、成本高、响应慢的问题。

阅读 634

Minion:比Anthropic更早实现大模型Programmatic Tool Calling范式的国产开源项目

2025年11月24日,Anthropic正式发布了Programmatic Tool Calling (PTC)特性,允许Claude通过代码而非单次API调用来编排工具执行。这一创新被认为是Agent开发的重要突破,能够显著降低token消耗、减少延迟并提升准确性。 然而,作为minion框架的创建者,我想分享一个有趣的事实:minion从一开始就采用了这种架构理念。在PTC概念被正式提出之前,minion已经在生产环境中证明了这种方法的价值。

阅读 273

智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试

就在刚才,智谱推出了两个语音识别模型:闭源的 GLM-ASR 和开源的 GLM-ASR-Nano-2512。与过去他们更多关注通用大模型或多模态模型不同,这次聚焦的是语音转文字(ASR)任务,尤其面向中文语境、方言与复杂环境。以下是对这两款模型已知公开资料的整理与分析。

阅读 621