如何训练一个大语言模型?当前基于transformer架构的大语言模型的通用训练流程介绍

在当今的人工智能领域,大型语言模型(LLM)已成为备受瞩目的研究方向之一。它们能够理解和生成人类语言,为各种自然语言处理任务提供强大的能力。然而,这些模型的训练不仅仅是将数据输入神经网络,还包括一个复杂的管线,其中包括预训练、监督微调和对齐三个关键步骤。本文将详细介绍这三个步骤,特别关注强化学习与人类反馈(RLHF)的作用和重要性。

大规模中文开源数据集发布!2TB、几十亿条可商用的中文数据集书生·万卷 1.0开源~中文大模型能力可能要更上一层楼了!

随着近年来GPT-3、ChatGPT等大模型的兴起,高质量的数据集在模型训练中扮演着越来越重要的角色。但是当前领先的预训练模型使用的数据集细节往往不公开,开源数据的匮乏制约着研究社区的进一步发展。特别是大规模中文数据集十分缺乏,对中文大模型以及业界模型的中文支持都有很大的影响。此次,上海人工智能实验室发布的这个数据集包含了丰富的中文,对于大模型的中文能力提升十分有价值。

AI2发布全新的大语言模型预训练数据集:包含3万亿tokens的大规模文本数据集AI2 Dolma,开源免费商用数据集~

Allen Institute for AI简称AI2,是2014年成立的一个非营利性研究组织,其创办者是之前的微软联合创始人Paul G. Allen。目前该组织主导了几个非常大的项目,希望借助AI来推动科学、医学等领域的进步。此前也开源过大模型OLMo等。这次是该组织第一份发布AI数据集相关的项目,名称位Dolma,是一个包含了3万亿tokens的数据集,目前第一版本仅仅包含英文。

需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~

开源大语言模型的发展非常迅速,其强大的能力也吸引了很多人的尝试与体验。尽管预训练大语言模型的使用并不复杂,但是,因为其对GPU资源的消耗很大,导致很多人并不能很好地运行加载模型,也做了很多浪费时间的工作。其中一个比较的的问题就是很多人并不知道自己的显卡支持多大参数规模的模型运行。本文将针对这个问题做一个非常简单的介绍和估算。

突破英特尔CPU+英伟达GPU的大模型训练硬件组合:苹果与AMD都有新进展!

大语言模型的训练和微调的硬件资源要求很高。现行主流的大模型训练硬件一般采用英特尔的CPU+英伟达的GPU进行。主要原因在于二者提供了符合大模型训练所需的计算架构和底层的加速库。但是,最近苹果M2 Ultra和AMD的显卡进展让我们看到了一些新的希望。

SlimPajama:CerebrasAI开源最新可商用的高质量大语言模型训练数据集,含6270亿个tokens!

大语言模型训练的一个重要前提就是高质量超大规模的数据集。为了促进开源大模型生态的发展,Cerebras新发布了一个超大规模的文本数据集SlimPajama,SlimPajama可以作为大语言模型的训练数据集,具有很高的质量。除了SlimPajama数据集外,Cerebras此次还开源了处理原始数据的脚本,包括去重和预处理部分。官方认为,这是目前第一个开源处理万亿规模数据集的清理和MinHashLSH去重工具。

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

强大的对象分割开源算法!Meta AI开源Segment Anything: Working(SAM)预训练大模型!

SAM全称是Segment Anything Model,由MetaAI最新发布的一个图像分割领域的预训练模型。该模型十分强大,并且有类似GPT那种基于Prompt的工作能力,在图像分割任务上展示了强大的能力!此外,该模型从数据集到训练代码和预训练结果完全开源!真Open的AI!

如何训练你自己的大语言模型?——来自Replit一线工程师的亲身经验

本文是Replit工程师发表的训练自己的大语言模型的过程的经验和步骤总结。Replit是一家IDE提供商,它们训练LLM的主要目的是解决编程过程的问题。Replit在训练自己的大语言模型时候使用了Databricks、Hugging Face和MosaicML等提供的技术栈。这篇文章提供的都是一线的实际经验,适合ML/AI架构师以及算法工程师学习。

实际案例说明AI时代大语言模型三种微调技术的区别——Prompt-Tuning、Instruction-Tuning和Chain-of-Thought

Prompt-Tuning、Instruction-Tuning和Chain-of-Thought是近几年十分流行的大模型训练技术,本文主要介绍这三种技术及其差别。

OpenAI世界最强的语音识别预训练模型WhisperV2即将来临

Whisper是由Open AI训练并开源的语音识别模型,它在英语语音识别方面接近人类水平的鲁棒性和准确性。该模型于2022年9月21日发布之后引起了广大的关注。由于模型的准确性太过惊人,大家已经认为可以直接用于视频的配音制作了。而今天有人发现Whisper的GitHub上有了一个新的提交记录,显示Whisper V2版本即将来临。

重磅!学术论文处理预训练大模型GALACTICA发布!

自然语言处理预训练大模型在最近几年十分流行,如OpenAI的GPT-3模型,在很多领域都取得了十分优异的性能。谷歌的PaLM也在很多自然语言处理模型中获得了很好的效果。而昨天,PapersWithCode发布了一个学术论文处理领域预训练大模型GALACTICA。功能十分强大,是科研人员的好福利!

6张示意图解释6种语言模型(Language Transformer)使用方式

近几年语言模型的发展速度很快,各种大语言预训练模型的推出让算法在各种NLP的任务中都取得了前所未有的成绩。其中2017年谷歌发布的Attention is All You Need论文将transformer架构推向了世界,这也是现在最流行的语言模型结构。威斯康星大学麦迪逊分校的统计学教授Sebastian Raschka总结了6中Language Transformer的使用方法。值得一看。

国产代码补全预训练模型——清华大学CodeGeeX发布!

随着NLP预训练模型的发展,大语言模型在各个领域的作用也越来越大。几个月前,GitHub基于OpenAI的GPT-3训练的Copilot效果十分惊艳,可惜现在已经开始收费。而最近,清华大学也发布了一个代码补全神器——CodeGeeX。

深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?

在深度学习训练中,由于数据太大,现在的训练一般是按照一个批次的数据进行训练。批次大小(batch size)的设置在很多论文或者教程中都提示要设置为$2^n$,例如16、32等,这样可能会在现有的硬件中获得更好的性能。但是,目前似乎没有人进行过实际的测试,例如32的batch size与33的batch size性能到底有多大差别?德国的Thomas Bierhance做了一系列实验,以验证批次大小设置为2的幂次方是不是真的可以加速。