大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。
今天马斯克旗下的xAI公司发布了最新一代大语言模型Grok3,基于20万张GPU集群训练,各方面的提升都非常明显。在主流评测上都超过了现有的大模型。
在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。
三个小时前,Sam Altam在推特上说明了OpenAI未来的大模型路线图。比较重磅的消息是即将在未来几周发布GPT-4.5,并且在几个月后发布GPT-5。
在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。
随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。
全球知名AI基准测试机构Artificial Analysis最新发布的2025年第一季度报告揭示了一个引人注目的重要趋势:在大语言模型领域,全球正在形成中美双极主导的新格局。这份权威报告通过严谨的技术指标评测体系,首次以数据量化的方式确认了中国AI技术水平的跨越式发展,特别是在顶尖大模型的研发领域,中国已经实质性地跻身全球第一梯队。本文根据报告的主要内容,为大家总结他们的一些观点和数据。
最近,随着DeepSeek R1的火爆,推理大模型也进入大众的视野。但是,相比较此前的GPT-4o,推理大模型的区别是什么?它适合什么样的任务?推理大模型是如何训练出来的?很多人并不了解。本文将详细解释推理大模型的核心内容。
大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P
近年来,大语言模型(LLM)的能力飞速提升,但评测基准的发展却显得滞后。以广泛使用的MMLU(大规模多任务语言理解)为例,GPT-4、Claude等前沿模型已能在其90%以上的问题上取得高分。这种“评测饱和”现象导致研究者难以精准衡量模型在尖端知识领域的真实能力。为此,Safety for AI和Scale AI的研究人员推出了Humanity’s Last Exam大模型评测基准。这是一个全新的评测基准,旨在成为大模型“闭卷学术评测的终极考验”。
DeepSeekAI最近发布的几个模型,如DeepSeek V3、DeepSeek R1等引起了全球的广泛关注和讨论,特别是低成本训练出高质量模型之后,引起了很多的争论。引起了大家对OpenAI、英伟达等公司未来的质疑。然而,对于DeepSeekAI的模型为什么引起了如此广泛的关注,以及大家讨论的核心内容是什么,很多人并不是很清楚。本文基于著名的独立科技行业分析师Ben Thompson的总结,配合DataLearnerAI的分析,为大家总结DeepSeek引起的全球讨论。
评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。
在大模型的应用中,处理复杂请求往往伴随着较高的延迟和成本,尤其是当请求内容存在大量重复部分时。这种“慢请求”的问题,特别是在长提示和高频交互的场景中,显得尤为突出。为了应对这一挑战,OpenAI 最近推出了 **提示缓存(Prompt Caching)** 功能。这项新技术通过缓存模型处理过的相同前缀部分,避免了重复计算,从而大幅减少了请求的响应时间和相关成本。特别是对于包含静态内容的长提示请求,提示缓存能够显著提高效率,降低运行开销。本文将详细介绍这项功能的工作原理、支持的模型,以及如何通过合理的提示结
OpenAI的o1模型被认为是大模型领域中推理能力最强的代表之一,由于其强大的数学逻辑推理能力,被认为是大模型未来的进化方向。而就在2个月之后的11月快结束的时间里,幻方量化旗下人工智能企业DeepSeekAI发布了全新的DeepSeek-R1-Lite-Preview模型,号称是o1模型的有力挑战者。该模型利用了类似的o1的思维链思索过程,推理能力大幅增强。DataLearnerAI将在本文中对该模型进行介绍,并进行几个简单的对比结果测试。结果证明这个模型是非常优秀的!
随着OpenAI发布推理大模型o1,专注于推理能力的大模型开始被广泛关注。基于思维链探索的推理大模型也不断涌现。此前,DeepSeekAI与上海人工智能实验室都发布过推理大模型,也展现了很不错的推理能力,虽然DeepSeekAI官方承诺该模型会开源,但是目前还没有发布。今天,阿里开源了一个全新的推理大模型QwQ-32B-Preview,其推理能力在评测结果上超过o1-mini,是目前开源领域最强的推理大模型(也可能是目前唯一)。