
阿里开源全新编程大模型Qwen3-Coder-480B-A35B,官方宣称其编程水平接近Claude Sonnet 4,免费开源可商用,同时开源Claude Code免费平替选择Qwen Code
阿里宣布开源第三代编程大模型Qwen3-Coder-480B-A35B,该模型是Qwen3编程大模型中第一个开源的版本,同时官方还基于Google的Gemini CLI改造并开源了阿里自己的命令行编程工具Qwen Code,完全免费使用。
加载中...

阿里宣布开源第三代编程大模型Qwen3-Coder-480B-A35B,该模型是Qwen3编程大模型中第一个开源的版本,同时官方还基于Google的Gemini CLI改造并开源了阿里自己的命令行编程工具Qwen Code,完全免费使用。

几个小时前,OpenAI的研究人员披露,其一款内部实验性的大语言模型,在模拟的国际数学奥林匹克(International Math Olympiad ,IMO)竞赛2025中取得了金牌水平的成绩。这是一个里程碑式的突破,因为IMO被认为是衡量创造性数学推理能力的巅峰,远超以往任何AI基准测试。这项成就并非通过专门针对数学的“窄”方法实现,而是源于通用人工智能研究的根本性突破,尤其是在处理难以验证的任务和长时间推理方面。

MTEB是一个用于评估向量大模型向量化准确性的评测排行榜。它全称为Massive Text Embedding Benchmark,是一个旨在衡量文本嵌入模型在多种任务上表现的基准测试。

Creative Writing v3 是一个用于评估大型语言模型(LLM)创意写作能力的评测基准。该基准采用混合评分系统,旨在更精确地区分不同模型,特别是顶尖模型之间的性能差异。

编程领域大模型一直是进展非常快的大模型领域。因为编程能力更强的模型,通常在逻辑思维、工具调用上有更好的表现,在很多领域,特别是Agent领域有很大的应用价值。今天法国人工智能明星公司MistralAI发布了2个全新的编程大模型,分别是Devstral Medium和 Devstral Small 1.1,后者是一个开源的240亿参数的编程大模型。

马斯克旗下的xAI公司正式发布Grok4大模型,包含Grok 4和Grok4 Heavy版本,其中Grok4 Heavy是一个Agent系统,在AIME2025(美国的数学邀请赛)得分满分,超过了所有大模型。此前透露的Grok 4 Code和视频生成能力都没有发布。

人工智能(AI)的通用智能(AGI)发展一直是研究领域的焦点。近期,由 ARC Prize 基金会推出并由 AI 研究者 François Chollet 联合发起的 ARC-AGI-2 评测基准,为衡量大模型在未知情境下的实时推理能力和学习效率提供了新的视角。

Grok4是马斯克旗下大模型初创企业xAI的第四代代码,在五月份的时候,马斯克就透露他们马上要发布Grok 3.5模型,六月份的时候说这个模型效果很好,版本号就直接改为4,这中间经过多次波折,最终马斯克说Grok 4将在7月4日之后发布。截止目前,虽然xAI官方没有正式宣布Grok 4,但是目前Grok 4已经透露了很多的消息。本文将对这些信息做总结和分析。

今天,SimilarWeb发布了一个全新的报告,描述了自从ChatGPT这种大模型产品发布之后,新闻出版网站的流量下滑严重,并提供了相关的分析。尽管这是针对新闻网站的报告,但是实际上所有的内容网站或者是内容生产者可能都是有影响的。我们基于这份报告进行解读,为大家提供一个参考。

GLM-4.1V-Thinking是智谱AI(Zhipu AI)与清华大学KEG实验室联合推出的多模态推理大模型。这款模型并非简单的版本迭代,而是通过一个以“推理为中心”的全新训练框架,旨在将多模态模型的能力从基础的视觉感知,推向更复杂的逻辑推理和问题解决层面。多模态理解能力接近720亿的Qwen2.5-VL-72B。

Ai2近日发布的全新评测平台——SciArena,为这一痛点带来了创新解法。此次产品不仅继承了“人类众包对比评测”的理念,更结合科学问题的独特复杂性,构建了开放、透明且可迭代的模型评测生态。

盘古大模型是华为自研的大语言模型,基于华为的硬件和技术栈进行训练。此前一直被认为是国产技术占比很高的国产大模型。今天,华为开源了2个盘古大模型,分别是MoE架构的Pangu Pro MoE模型以及70亿参数规模的Pangu Embedded模型。

今天,百度正式宣布开源其最新的旗舰级大模型系列——ERNIE 4.5。ERNIE 4.5系列模型当前包含2个多模态大模型,4个大语言模型及其不同变体的庞大家族,还区分了PyTorch版本和paddlepaddle版本,共23个模型,其核心采用了创新的异构多模态混合专家(MoE)架构,在提升多模态理解能力的同时,实现了文本处理性能的同步增强。每个版本的模型都开源了基座(Base)版本和后训练版本(不带Base)。

昨天,Anthropic公布了一项引人注目的实验——Project Vend。他们让旗下的大模型Claude Sonnet 3.7在一个真实的办公环境中,自主经营一家小型自动化商店,为期约一个月。这个实验的目标是探索,在不久的将来,AI模型在真实经济体中自主运行任务的可行性、潜在的成功模式以及那些出人意料的失败方式。实验结果非常强大,也充满了令人深思的细节!

腾讯发布并开源了其混元大模型系列的新成员Hunyuan-A13B。该模型定位为一个基于细粒度专家混合(MoE)架构的大语言模型。其主要特点是高效率和可扩展性,旨在为开发者和研究人员,特别是在资源受限的环境中,提供高级推理和通用应用能力。Hunyuan-A13B是由原来的微软的WizardLM团队成员打造,评测结果超Qwen2.5-72B和Qwen3-A22B

继Gemma系列模型发布并迅速形成超过1.6亿次下载的繁荣生态后,Google再次推出了其在端侧AI领域的重磅力作——Gemma 3n。这款模型并非一次简单的迭代,而是基于全新的移动优先(mobile-first)架构,旨在为开发者提供前所未有的设备端多模态处理能力。Gemma 3n的定位是成为一款高效、强大且灵活的开源模型,直接与设备端AI领域的其他先进模型(如Phi-4、Llama系列的小参数版本)竞争,其核心特性在于原生支持图像、音频、视频和文本输入。

Qwen3 是阿里于 2025 年 6 月开源的新一代大模型系列,共发布了 8 个不同参数规模的模型,覆盖从 6 亿到 2350 亿参数的范围,融合了稠密模型和 MoE 架构。值得注意的是,此次未包含此前广受关注的 Qwen-72B 稠密模型版本,阿里表示从 Qwen3 起,超过 30B 参数的模型将统一采用 MoE 架构以优化性能和效率。

Mistral AI今天发布了其首个专注于推理能力的系列模型——**Magistral**。这次发布包含两个核心模型:旗舰模型`Magistral Medium`和<font color=red>已开源的</font>`Magistral Small (24B)`。最引人注目的亮点是,Mistral展示了其自研的强化学习(RL)pipeline能够从头开始,仅通过RL训练就将基础模型的推理能力提升到业界顶尖水平,而无需依赖任何其他预先存在的推理模型进行数据蒸馏。这套技术栈非常强大!

OpenAI 正式发布了其最新模型 OpenAI o3-pro,这是其旗舰模型 o3 的专业增强版。o3-pro 专为需要“更长时间思考”的复杂任务而设计,其核心亮点在于极致的可靠性和准确性,尤其在数学、科学和编程等专业领域表现卓越。根据OpenAI引入的全新“4/4可靠性”评测标准,o3-pro 的性能远超前代,OpenAI官方强调o3-pro在处理高难度、高风险任务的能力上实现了质的飞跃。

阿里巴巴Qwen团队发布了全新的Qwen3 Embedding系列模型,这是一套基于Qwen3基础模型构建的专用文本向量与重排(Reranking)模型。该系列模型凭借Qwen3强大的多语言理解能力,在多项文本向量与重排任务的Benchmark上达到了SOTA水平,其中8B尺寸的向量模型在MTEB多语言排行榜上排名第一。Qwen3 Reranker模型在多个评测基准上同样大幅超越了现有的主流开源竞品。

随着大语言模型(LLM)的发展越来越快,我们需要更好的方法来评估它们到底有多“聪明”,特别是在处理复杂数学问题的时候。AIME 2025 就是这样一个工具,它专门用来测试当前 AI 在高等数学推理方面的真实水平。

“Vibe Coding”(氛围编程)是一种新兴的编程范式,强调通过自然语言与人工智能(AI)协作开发软件。该概念由前 OpenAI 研究员 Andrej Karpathy 于 2025 年提出,旨在让开发者沉浸于创作氛围中,利用 AI 的能力,将自然语言描述转化为实际源代码,从而简化编程过程。

大规模多学科多模态理解与推理基准(MMMU)于2023年11月推出,是一种用于评估多模态模型的复杂工具。该基准测试人工智能系统在需要大学水平学科知识和深思熟虑推理的任务上的能力。与之前的基准不同,MMMU强调跨多个领域的先进感知和推理,旨在衡量朝专家级人工智能通用智能(AGI)的进展。

微软发布了全新的Phi-4推理模型系列,是小型语言模型(SLM)在复杂推理能力上的一种新的尝试。本次发布包含三个不同规模和性能的推理模型,分别是Phi-4-reasoning(140亿参数)、Phi-4-reasoning-plus(增强版140亿参数)和Phi-4-Mini-Reasoning(38亿参数)。这三款模型尽管参数规模远小于当前主流大型语言模型,却在多项推理基准测试中展现出与甚至超越大型模型的能力。